Information on Result #334294
There is no OOA(2176, 37, S2, 5, 148), because the LP bound with quadratic polynomials shows that M ≥ 14 750269 580834 180261 699090 136321 725892 330364 051017 170944 / 149 > 2176
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OOA(2180, 37, S2, 6, 152) | [i] | m-Reduction for OOAs | |
2 | No OOA(2181, 37, S2, 6, 153) | [i] | ||
3 | No OOA(2182, 37, S2, 6, 154) | [i] | ||
4 | No OOA(2183, 37, S2, 6, 155) | [i] | ||
5 | No OOA(2184, 37, S2, 6, 156) | [i] | ||
6 | No OOA(2185, 37, S2, 6, 157) | [i] | ||
7 | No OOA(2186, 37, S2, 6, 158) | [i] | ||
8 | No OOA(2187, 37, S2, 6, 159) | [i] | ||
9 | No OOA(2188, 37, S2, 6, 160) | [i] | ||
10 | No OOA(2189, 37, S2, 6, 161) | [i] | ||
11 | No OOA(2190, 37, S2, 6, 162) | [i] | ||
12 | No OOA(2191, 37, S2, 6, 163) | [i] | ||
13 | No OOA(2192, 37, S2, 6, 164) | [i] | ||
14 | No OOA(2193, 37, S2, 6, 165) | [i] | ||
15 | No OOA(2194, 37, S2, 6, 166) | [i] | ||
16 | No OOA(2195, 37, S2, 6, 167) | [i] | ||
17 | No OOA(2196, 37, S2, 6, 168) | [i] | ||
18 | No OOA(2197, 37, S2, 6, 169) | [i] | ||
19 | No OOA(2198, 37, S2, 6, 170) | [i] | ||
20 | No OOA(2199, 37, S2, 6, 171) | [i] | ||
21 | No OOA(2200, 37, S2, 6, 172) | [i] | ||
22 | No OOA(2201, 37, S2, 6, 173) | [i] | ||
23 | No OOA(2202, 37, S2, 6, 174) | [i] | ||
24 | No OOA(2203, 37, S2, 6, 175) | [i] | ||
25 | No OOA(2204, 37, S2, 6, 176) | [i] | ||
26 | No OOA(2205, 37, S2, 6, 177) | [i] | ||
27 | No OOA(2206, 37, S2, 6, 178) | [i] | ||
28 | No OOA(2207, 37, S2, 6, 179) | [i] | ||
29 | No OOA(2208, 37, S2, 6, 180) | [i] | ||
30 | No OOA(2176, 37, S2, 6, 148) | [i] | Depth Reduction | |
31 | No OOA(2176, 37, S2, 7, 148) | [i] | ||
32 | No OOA(2176, 37, S2, 8, 148) | [i] | ||
33 | No (28, 176, 37)-net in base 2 | [i] | Extracting Embedded OOA |