Information on Result #334298

There is no OOA(2250, 52, S2, 5, 208), because the LP bound with quadratic polynomials shows that M ≥ 388989 049781 609094 001058 777763 560940 444578 854736 136269 820052 821276 583169 884160 / 209 > 2250

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OOA(2251, 53, S2, 5, 209) [i]Truncation for OOAs
2No OOA(2251, 52, S2, 6, 209) [i]m-Reduction for OOAs
3No OOA(2255, 52, S2, 6, 213) [i]
4No OOA(2256, 52, S2, 6, 214) [i]
5No OOA(2257, 52, S2, 6, 215) [i]
6No OOA(2258, 52, S2, 6, 216) [i]
7No OOA(2259, 52, S2, 6, 217) [i]
8No OOA(2260, 52, S2, 6, 218) [i]
9No OOA(2250, 52, S2, 6, 208) [i]Depth Reduction
10No OOA(2250, 52, S2, 7, 208) [i]
11No OOA(2250, 52, S2, 8, 208) [i]
12No (42, 250, 52)-net in base 2 [i]Extracting Embedded OOA