Information on Result #511795
There is no (16, 116, 780)-net in base 16, because the generalized Rao bound for nets shows that 16m ≥ 48 003585 677147 096241 378194 527010 459665 811218 295288 638809 543921 178116 838708 610033 793946 458866 399917 141439 403954 638714 025846 327459 605652 219376 > 16116
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (16, 117, 780)-net in base 16 | [i] | m-Reduction | |
2 | No (16, 118, 780)-net in base 16 | [i] | ||
3 | No (16, 119, 780)-net in base 16 | [i] | ||
4 | No (16, 120, 780)-net in base 16 | [i] | ||
5 | No (16, 121, 780)-net in base 16 | [i] | ||
6 | No (16, 122, 780)-net in base 16 | [i] | ||
7 | No (16, 123, 780)-net in base 16 | [i] | ||
8 | No (16, 124, 780)-net in base 16 | [i] | ||
9 | No (16, 125, 780)-net in base 16 | [i] | ||
10 | No (16, 126, 780)-net in base 16 | [i] | ||
11 | No (16, 127, 780)-net in base 16 | [i] | ||
12 | No (16, 128, 780)-net in base 16 | [i] | ||
13 | No (16, 129, 780)-net in base 16 | [i] | ||
14 | No (16, 130, 780)-net in base 16 | [i] |