Information on Result #516163

There is no (9, 79, 1102)-net in base 32, because the generalized Rao bound for nets shows that 32m ≥ 80714 773630 284453 729957 110611 230211 848287 485471 881277 628302 334531 254108 666134 586167 277475 348234 216991 667117 108461 316764 > 3279

Mode: Bound.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No (9, 80, 1102)-net in base 32 [i]m-Reduction
2No (9, 81, 1102)-net in base 32 [i]
3No (9, 82, 1102)-net in base 32 [i]
4No (9, 83, 1102)-net in base 32 [i]
5No (9, 84, 1102)-net in base 32 [i]
6No (9, 85, 1102)-net in base 32 [i]
7No (9, 86, 1102)-net in base 32 [i]
8No (9, 87, 1102)-net in base 32 [i]
9No (9, 88, 1102)-net in base 32 [i]
10No (9, 89, 1102)-net in base 32 [i]
11No (9, 90, 1102)-net in base 32 [i]
12No (9, 91, 1102)-net in base 32 [i]
13No (9, 92, 1102)-net in base 32 [i]
14No (9, 93, 1102)-net in base 32 [i]
15No (9, 94, 1102)-net in base 32 [i]
16No (9, 95, 1102)-net in base 32 [i]
17No (9, 96, 1102)-net in base 32 [i]
18No (9, 97, 1102)-net in base 32 [i]
19No (9, 98, 1102)-net in base 32 [i]
20No (9, 99, 1102)-net in base 32 [i]
21No (9, 100, 1102)-net in base 32 [i]
22No (9, 101, 1102)-net in base 32 [i]
23No (9, 102, 1102)-net in base 32 [i]
24No (9, 103, 1102)-net in base 32 [i]
25No (9, 104, 1102)-net in base 32 [i]
26No (9, 105, 1102)-net in base 32 [i]
27No (9, 106, 1102)-net in base 32 [i]
28No (9, 107, 1102)-net in base 32 [i]
29No (9, 108, 1102)-net in base 32 [i]
30No (9, 109, 1102)-net in base 32 [i]
31No (9, 110, 1102)-net in base 32 [i]