Information on Result #519594
There is no (0, 2, 258)-net in base 256, because the generalized Rao bound for nets shows that 256m ≥ 65791 > 2562
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (0, 3, 258)-net in base 256 | [i] | m-Reduction | |
2 | No (0, 4, 258)-net in base 256 | [i] | ||
3 | No (0, 5, 258)-net in base 256 | [i] | ||
4 | No (0, 6, 258)-net in base 256 | [i] | ||
5 | No (0, 7, 258)-net in base 256 | [i] | ||
6 | No (0, 8, 258)-net in base 256 | [i] | ||
7 | No (0, 9, 258)-net in base 256 | [i] | ||
8 | No (0, 10, 258)-net in base 256 | [i] | ||
9 | No (0, 11, 258)-net in base 256 | [i] | ||
10 | No (0, 12, 258)-net in base 256 | [i] | ||
11 | No (0, 13, 258)-net in base 256 | [i] | ||
12 | No (0, 14, 258)-net in base 256 | [i] | ||
13 | No (0, 15, 258)-net in base 256 | [i] | ||
14 | No (0, 16, 258)-net in base 256 | [i] | ||
15 | No (0, 17, 258)-net in base 256 | [i] | ||
16 | No (0, 18, 258)-net in base 256 | [i] | ||
17 | No (0, 19, 258)-net in base 256 | [i] | ||
18 | No (0, 20, 258)-net in base 256 | [i] | ||
19 | No (0, 21, 258)-net in base 256 | [i] | ||
20 | No (0, 22, 258)-net in base 256 | [i] | ||
21 | No (0, 23, 258)-net in base 256 | [i] | ||
22 | No (0, 24, 258)-net in base 256 | [i] | ||
23 | No (0, 25, 258)-net in base 256 | [i] | ||
24 | No (0, 26, 258)-net in base 256 | [i] | ||
25 | No (0, 27, 258)-net in base 256 | [i] | ||
26 | No (0, 28, 258)-net in base 256 | [i] | ||
27 | No (0, 29, 258)-net in base 256 | [i] | ||
28 | No (0, 30, 258)-net in base 256 | [i] | ||
29 | No (0, 31, 258)-net in base 256 | [i] | ||
30 | No (0, 32, 258)-net in base 256 | [i] | ||
31 | No (0, 33, 258)-net in base 256 | [i] | ||
32 | No (0, 34, 258)-net in base 256 | [i] | ||
33 | No (0, 35, 258)-net in base 256 | [i] | ||
34 | No (0, 36, 258)-net in base 256 | [i] | ||
35 | No (0, 37, 258)-net in base 256 | [i] | ||
36 | No (0, 38, 258)-net in base 256 | [i] | ||
37 | No (0, 39, 258)-net in base 256 | [i] | ||
38 | No (0, 40, 258)-net in base 256 | [i] | ||
39 | No (0, 41, 258)-net in base 256 | [i] | ||
40 | No (0, 42, 258)-net in base 256 | [i] | ||
41 | No (0, 43, 258)-net in base 256 | [i] | ||
42 | No (0, 44, 258)-net in base 256 | [i] | ||
43 | No (0, 45, 258)-net in base 256 | [i] | ||
44 | No (0, 46, 258)-net in base 256 | [i] | ||
45 | No (0, 47, 258)-net in base 256 | [i] | ||
46 | No (0, 48, 258)-net in base 256 | [i] | ||
47 | No (0, 49, 258)-net in base 256 | [i] | ||
48 | No (0, 50, 258)-net in base 256 | [i] | ||
49 | No (0, 51, 258)-net in base 256 | [i] | ||
50 | No (0, 52, 258)-net in base 256 | [i] | ||
51 | No (0, 53, 258)-net in base 256 | [i] | ||
52 | No (0, 54, 258)-net in base 256 | [i] | ||
53 | No (0, 55, 258)-net in base 256 | [i] | ||
54 | No (0, 56, 258)-net in base 256 | [i] | ||
55 | No (0, 57, 258)-net in base 256 | [i] | ||
56 | No (0, 58, 258)-net in base 256 | [i] | ||
57 | No (0, 59, 258)-net in base 256 | [i] | ||
58 | No (0, 60, 258)-net in base 256 | [i] | ||
59 | No (0, 61, 258)-net in base 256 | [i] | ||
60 | No (0, 62, 258)-net in base 256 | [i] | ||
61 | No (0, 63, 258)-net in base 256 | [i] | ||
62 | No (0, 64, 258)-net in base 256 | [i] | ||
63 | No (0, 65, 258)-net in base 256 | [i] | ||
64 | No (0, 66, 258)-net in base 256 | [i] | ||
65 | No (0, 67, 258)-net in base 256 | [i] | ||
66 | No (0, 68, 258)-net in base 256 | [i] | ||
67 | No (0, m, 258)-net in base 256 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |