Information on Result #520186
There is no (22, 91, 33)-net in base 2, because extracting embedded OOA would yield OOA(291, 33, S2, 3, 69), but
- the LP bound with quadratic polynomials shows that M ≥ 316912 650057 057350 374175 801344 / 105 > 291 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (22, 92, 33)-net in base 2 | [i] | m-Reduction | |
2 | No (22, 93, 33)-net in base 2 | [i] | ||
3 | No (22, 94, 33)-net in base 2 | [i] | ||
4 | No (22, 95, 33)-net in base 2 | [i] | ||
5 | No (22, 96, 33)-net in base 2 | [i] | ||
6 | No (22, 97, 33)-net in base 2 | [i] | ||
7 | No (22, 98, 33)-net in base 2 | [i] | ||
8 | No (22, 99, 33)-net in base 2 | [i] | ||
9 | No (22, 100, 33)-net in base 2 | [i] | ||
10 | No (22, 101, 33)-net in base 2 | [i] | ||
11 | No (22, 102, 33)-net in base 2 | [i] | ||
12 | No (22, 103, 33)-net in base 2 | [i] | ||
13 | No (22, 104, 33)-net in base 2 | [i] | ||
14 | No (22, 105, 33)-net in base 2 | [i] | ||
15 | No (22, 106, 33)-net in base 2 | [i] | ||
16 | No (22, 107, 33)-net in base 2 | [i] | ||
17 | No (22, 108, 33)-net in base 2 | [i] | ||
18 | No (22, 109, 33)-net in base 2 | [i] | ||
19 | No (22, 110, 33)-net in base 2 | [i] | ||
20 | No (22, 111, 33)-net in base 2 | [i] | ||
21 | No (22, 112, 33)-net in base 2 | [i] | ||
22 | No (22, 113, 33)-net in base 2 | [i] | ||
23 | No (22, 114, 33)-net in base 2 | [i] | ||
24 | No (22, 115, 33)-net in base 2 | [i] | ||
25 | No (22, 116, 33)-net in base 2 | [i] |