Information on Result #520269
There is no (31, 192, 40)-net in base 2, because extracting embedded OOA would yield OOA(2192, 40, S2, 5, 161), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 200867 255532 373784 442745 261542 645325 315275 374222 849104 412672 / 27 > 2192 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (31, 193, 40)-net in base 2 | [i] | m-Reduction | |
2 | No (31, 194, 40)-net in base 2 | [i] | ||
3 | No (31, 195, 40)-net in base 2 | [i] | ||
4 | No (31, 196, 40)-net in base 2 | [i] | ||
5 | No (31, 197, 40)-net in base 2 | [i] | ||
6 | No (31, 198, 40)-net in base 2 | [i] | ||
7 | No (31, 199, 40)-net in base 2 | [i] | ||
8 | No (31, 200, 40)-net in base 2 | [i] | ||
9 | No (31, 201, 40)-net in base 2 | [i] | ||
10 | No (31, 202, 40)-net in base 2 | [i] | ||
11 | No (31, 203, 40)-net in base 2 | [i] | ||
12 | No (31, 204, 40)-net in base 2 | [i] | ||
13 | No (31, 205, 40)-net in base 2 | [i] | ||
14 | No (31, 206, 40)-net in base 2 | [i] | ||
15 | No (31, 207, 40)-net in base 2 | [i] | ||
16 | No (31, 208, 40)-net in base 2 | [i] | ||
17 | No (31, 209, 40)-net in base 2 | [i] | ||
18 | No (31, 210, 40)-net in base 2 | [i] | ||
19 | No (31, 211, 40)-net in base 2 | [i] | ||
20 | No (31, 212, 40)-net in base 2 | [i] | ||
21 | No (31, 213, 40)-net in base 2 | [i] | ||
22 | No (31, 214, 40)-net in base 2 | [i] | ||
23 | No (31, 215, 40)-net in base 2 | [i] | ||
24 | No (31, 216, 40)-net in base 2 | [i] | ||
25 | No (31, 217, 40)-net in base 2 | [i] | ||
26 | No (31, 218, 40)-net in base 2 | [i] | ||
27 | No (31, 219, 40)-net in base 2 | [i] | ||
28 | No (31, 220, 40)-net in base 2 | [i] | ||
29 | No (31, 221, 40)-net in base 2 | [i] | ||
30 | No (31, 222, 40)-net in base 2 | [i] | ||
31 | No (31, 223, 40)-net in base 2 | [i] | ||
32 | No (31, 224, 40)-net in base 2 | [i] | ||
33 | No (31, 225, 40)-net in base 2 | [i] | ||
34 | No (31, 226, 40)-net in base 2 | [i] | ||
35 | No (31, 227, 40)-net in base 2 | [i] | ||
36 | No (31, 228, 40)-net in base 2 | [i] | ||
37 | No (31, 229, 40)-net in base 2 | [i] | ||
38 | No (31, 230, 40)-net in base 2 | [i] | ||
39 | No (31, 231, 40)-net in base 2 | [i] | ||
40 | No (31, 232, 40)-net in base 2 | [i] | ||
41 | No (31, 233, 40)-net in base 2 | [i] | ||
42 | No (31, 234, 40)-net in base 2 | [i] | ||
43 | No (31, 235, 40)-net in base 2 | [i] | ||
44 | No (31, 236, 40)-net in base 2 | [i] | ||
45 | No (31, 237, 40)-net in base 2 | [i] | ||
46 | No (31, 238, 40)-net in base 2 | [i] | ||
47 | No (31, 239, 40)-net in base 2 | [i] | ||
48 | No (31, 240, 40)-net in base 2 | [i] | ||
49 | No (31, 241, 40)-net in base 2 | [i] | ||
50 | No (31, 242, 40)-net in base 2 | [i] | ||
51 | No (31, 243, 40)-net in base 2 | [i] | ||
52 | No (31, 244, 40)-net in base 2 | [i] | ||
53 | No (31, 245, 40)-net in base 2 | [i] | ||
54 | No (31, 246, 40)-net in base 2 | [i] | ||
55 | No (31, 247, 40)-net in base 2 | [i] | ||
56 | No (31, 248, 40)-net in base 2 | [i] | ||
57 | No (31, 249, 40)-net in base 2 | [i] | ||
58 | No (31, 250, 40)-net in base 2 | [i] | ||
59 | No (31, 251, 40)-net in base 2 | [i] | ||
60 | No (31, 252, 40)-net in base 2 | [i] | ||
61 | No (31, 253, 40)-net in base 2 | [i] | ||
62 | No (31, 254, 40)-net in base 2 | [i] | ||
63 | No (31, 255, 40)-net in base 2 | [i] | ||
64 | No (31, 256, 40)-net in base 2 | [i] | ||
65 | No (31, 257, 40)-net in base 2 | [i] | ||
66 | No (31, 258, 40)-net in base 2 | [i] | ||
67 | No (31, 259, 40)-net in base 2 | [i] | ||
68 | No (31, 260, 40)-net in base 2 | [i] | ||
69 | No (31, m, 40)-net in base 2 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |