Information on Result #520993
There is no (131, 239, 292)-net in base 2, because extracting embedded orthogonal array would yield OA(2239, 292, S2, 108), but
- the linear programming bound shows that M ≥ 129 753212 264703 737764 759763 826530 014325 194921 459040 258227 297024 189374 782768 881401 211050 262528 / 138 951361 618522 578125 > 2239 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (131, 240, 292)-net in base 2 | [i] | m-Reduction | |
2 | No (131, 241, 292)-net in base 2 | [i] | ||
3 | No (131, 242, 292)-net in base 2 | [i] | ||
4 | No (131, 243, 292)-net in base 2 | [i] | ||
5 | No (131, 244, 292)-net in base 2 | [i] | ||
6 | No (131, 245, 292)-net in base 2 | [i] | ||
7 | No (131, 246, 292)-net in base 2 | [i] | ||
8 | No (131, 247, 292)-net in base 2 | [i] | ||
9 | No (131, 248, 292)-net in base 2 | [i] | ||
10 | No (131, 249, 292)-net in base 2 | [i] | ||
11 | No (131, 250, 292)-net in base 2 | [i] | ||
12 | No (131, 251, 292)-net in base 2 | [i] | ||
13 | No (131, 252, 292)-net in base 2 | [i] | ||
14 | No (131, 253, 292)-net in base 2 | [i] | ||
15 | No (131, 254, 292)-net in base 2 | [i] | ||
16 | No (131, 255, 292)-net in base 2 | [i] | ||
17 | No (131, 256, 292)-net in base 2 | [i] | ||
18 | No (131, 257, 292)-net in base 2 | [i] | ||
19 | No (131, 258, 292)-net in base 2 | [i] | ||
20 | No (131, 259, 292)-net in base 2 | [i] | ||
21 | No (131, 260, 292)-net in base 2 | [i] |