Information on Result #521157
There is no (18, 179, 46)-net in base 3, because extracting embedded OOA would yield OOA(3179, 46, S3, 4, 161), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 27 273371 522594 140467 153112 393800 633219 287891 860116 798827 111671 686466 135591 950100 031709 > 3179 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (18, 180, 46)-net in base 3 | [i] | m-Reduction | |
2 | No (18, 181, 46)-net in base 3 | [i] | ||
3 | No (18, 182, 46)-net in base 3 | [i] | ||
4 | No (18, 183, 46)-net in base 3 | [i] | ||
5 | No (18, 184, 46)-net in base 3 | [i] | ||
6 | No (18, 185, 46)-net in base 3 | [i] | ||
7 | No (18, 186, 46)-net in base 3 | [i] | ||
8 | No (18, 187, 46)-net in base 3 | [i] | ||
9 | No (18, 188, 46)-net in base 3 | [i] | ||
10 | No (18, 189, 46)-net in base 3 | [i] | ||
11 | No (18, 190, 46)-net in base 3 | [i] | ||
12 | No (18, 191, 46)-net in base 3 | [i] | ||
13 | No (18, 192, 46)-net in base 3 | [i] | ||
14 | No (18, 193, 46)-net in base 3 | [i] | ||
15 | No (18, 194, 46)-net in base 3 | [i] | ||
16 | No (18, 195, 46)-net in base 3 | [i] | ||
17 | No (18, 196, 46)-net in base 3 | [i] | ||
18 | No (18, 197, 46)-net in base 3 | [i] | ||
19 | No (18, 198, 46)-net in base 3 | [i] | ||
20 | No (18, 199, 46)-net in base 3 | [i] | ||
21 | No (18, 200, 46)-net in base 3 | [i] | ||
22 | No (18, 201, 46)-net in base 3 | [i] | ||
23 | No (18, 202, 46)-net in base 3 | [i] | ||
24 | No (18, 203, 46)-net in base 3 | [i] | ||
25 | No (18, 204, 46)-net in base 3 | [i] | ||
26 | No (18, 205, 46)-net in base 3 | [i] | ||
27 | No (18, 206, 46)-net in base 3 | [i] | ||
28 | No (18, 207, 46)-net in base 3 | [i] | ||
29 | No (18, 208, 46)-net in base 3 | [i] | ||
30 | No (18, 209, 46)-net in base 3 | [i] | ||
31 | No (18, 210, 46)-net in base 3 | [i] | ||
32 | No (18, 211, 46)-net in base 3 | [i] | ||
33 | No (18, 212, 46)-net in base 3 | [i] | ||
34 | No (18, 213, 46)-net in base 3 | [i] | ||
35 | No (18, 214, 46)-net in base 3 | [i] | ||
36 | No (18, 215, 46)-net in base 3 | [i] | ||
37 | No (18, 216, 46)-net in base 3 | [i] | ||
38 | No (18, 217, 46)-net in base 3 | [i] | ||
39 | No (18, 218, 46)-net in base 3 | [i] | ||
40 | No (18, 219, 46)-net in base 3 | [i] | ||
41 | No (18, 220, 46)-net in base 3 | [i] | ||
42 | No (18, 221, 46)-net in base 3 | [i] | ||
43 | No (18, 222, 46)-net in base 3 | [i] | ||
44 | No (18, 223, 46)-net in base 3 | [i] | ||
45 | No (18, 224, 46)-net in base 3 | [i] | ||
46 | No (18, 225, 46)-net in base 3 | [i] | ||
47 | No (18, 226, 46)-net in base 3 | [i] | ||
48 | No (18, 227, 46)-net in base 3 | [i] | ||
49 | No (18, 228, 46)-net in base 3 | [i] | ||
50 | No (18, 229, 46)-net in base 3 | [i] | ||
51 | No (18, 230, 46)-net in base 3 | [i] | ||
52 | No (18, 231, 46)-net in base 3 | [i] | ||
53 | No (18, 232, 46)-net in base 3 | [i] | ||
54 | No (18, 233, 46)-net in base 3 | [i] | ||
55 | No (18, 234, 46)-net in base 3 | [i] | ||
56 | No (18, 235, 46)-net in base 3 | [i] | ||
57 | No (18, 236, 46)-net in base 3 | [i] | ||
58 | No (18, 237, 46)-net in base 3 | [i] | ||
59 | No (18, 238, 46)-net in base 3 | [i] | ||
60 | No (18, 239, 46)-net in base 3 | [i] | ||
61 | No (18, 240, 46)-net in base 3 | [i] | ||
62 | No (18, 241, 46)-net in base 3 | [i] | ||
63 | No (18, 242, 46)-net in base 3 | [i] | ||
64 | No (18, 243, 46)-net in base 3 | [i] | ||
65 | No (18, 244, 46)-net in base 3 | [i] | ||
66 | No (18, 245, 46)-net in base 3 | [i] | ||
67 | No (18, 246, 46)-net in base 3 | [i] | ||
68 | No (18, 247, 46)-net in base 3 | [i] | ||
69 | No (18, 248, 46)-net in base 3 | [i] | ||
70 | No (18, 249, 46)-net in base 3 | [i] | ||
71 | No (18, 250, 46)-net in base 3 | [i] | ||
72 | No (18, m, 46)-net in base 3 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |