Information on Result #521593
There is no (60, 189, 194)-net in base 3, because extracting embedded orthogonal array would yield OA(3189, 194, S3, 129), but
- the (dual) Plotkin bound shows that M ≥ 121 451298 068529 844233 553416 568714 964256 622520 646270 917226 600348 303197 298080 156462 274524 325123 / 65 > 3189 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (60, 190, 194)-net in base 3 | [i] | m-Reduction | |
2 | No (60, 191, 194)-net in base 3 | [i] | ||
3 | No (60, 192, 194)-net in base 3 | [i] | ||
4 | No (60, 193, 194)-net in base 3 | [i] | ||
5 | No (60, 194, 194)-net in base 3 | [i] | ||
6 | No (60, 195, 194)-net in base 3 | [i] | ||
7 | No (60, 196, 194)-net in base 3 | [i] | ||
8 | No (60, 197, 194)-net in base 3 | [i] | ||
9 | No (60, 198, 194)-net in base 3 | [i] | ||
10 | No (60, 199, 194)-net in base 3 | [i] | ||
11 | No (60, 200, 194)-net in base 3 | [i] | ||
12 | No (60, 201, 194)-net in base 3 | [i] | ||
13 | No (60, 202, 194)-net in base 3 | [i] | ||
14 | No (60, 203, 194)-net in base 3 | [i] | ||
15 | No (60, 204, 194)-net in base 3 | [i] | ||
16 | No (60, 205, 194)-net in base 3 | [i] | ||
17 | No (60, 206, 194)-net in base 3 | [i] | ||
18 | No (60, 207, 194)-net in base 3 | [i] | ||
19 | No (60, 208, 194)-net in base 3 | [i] | ||
20 | No (60, 209, 194)-net in base 3 | [i] | ||
21 | No (60, 210, 194)-net in base 3 | [i] | ||
22 | No (60, 211, 194)-net in base 3 | [i] | ||
23 | No (60, 212, 194)-net in base 3 | [i] | ||
24 | No (60, 213, 194)-net in base 3 | [i] | ||
25 | No (60, 214, 194)-net in base 3 | [i] | ||
26 | No (60, 215, 194)-net in base 3 | [i] | ||
27 | No (60, 216, 194)-net in base 3 | [i] | ||
28 | No (60, 217, 194)-net in base 3 | [i] | ||
29 | No (60, 218, 194)-net in base 3 | [i] | ||
30 | No (60, 219, 194)-net in base 3 | [i] | ||
31 | No (60, 220, 194)-net in base 3 | [i] | ||
32 | No (60, 221, 194)-net in base 3 | [i] | ||
33 | No (60, 222, 194)-net in base 3 | [i] | ||
34 | No (60, 223, 194)-net in base 3 | [i] | ||
35 | No (60, 224, 194)-net in base 3 | [i] | ||
36 | No (60, 225, 194)-net in base 3 | [i] | ||
37 | No (60, 226, 194)-net in base 3 | [i] | ||
38 | No (60, 227, 194)-net in base 3 | [i] | ||
39 | No (60, 228, 194)-net in base 3 | [i] | ||
40 | No (60, 229, 194)-net in base 3 | [i] | ||
41 | No (60, 230, 194)-net in base 3 | [i] | ||
42 | No (60, 231, 194)-net in base 3 | [i] | ||
43 | No (60, 232, 194)-net in base 3 | [i] | ||
44 | No (60, 233, 194)-net in base 3 | [i] | ||
45 | No (60, 234, 194)-net in base 3 | [i] | ||
46 | No (60, 235, 194)-net in base 3 | [i] | ||
47 | No (60, 236, 194)-net in base 3 | [i] | ||
48 | No (60, 237, 194)-net in base 3 | [i] | ||
49 | No (60, 238, 194)-net in base 3 | [i] | ||
50 | No (60, 239, 194)-net in base 3 | [i] | ||
51 | No (60, 240, 194)-net in base 3 | [i] | ||
52 | No (60, 241, 194)-net in base 3 | [i] | ||
53 | No (60, 242, 194)-net in base 3 | [i] | ||
54 | No (60, 243, 194)-net in base 3 | [i] | ||
55 | No (60, 244, 194)-net in base 3 | [i] | ||
56 | No (60, 245, 194)-net in base 3 | [i] | ||
57 | No (60, 246, 194)-net in base 3 | [i] | ||
58 | No (60, 247, 194)-net in base 3 | [i] | ||
59 | No (60, 248, 194)-net in base 3 | [i] | ||
60 | No (60, 249, 194)-net in base 3 | [i] | ||
61 | No (60, 250, 194)-net in base 3 | [i] |