Information on Result #521636
There is no (63, 198, 203)-net in base 3, because extracting embedded orthogonal array would yield OA(3198, 203, S3, 135), but
- the (dual) Plotkin bound shows that M ≥ 2 390525 899882 872924 049031 898322 016641 463101 073880 550463 771174 655651 832418 111719 646949 462291 396009 / 68 > 3198 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (63, 199, 203)-net in base 3 | [i] | m-Reduction | |
2 | No (63, 200, 203)-net in base 3 | [i] | ||
3 | No (63, 201, 203)-net in base 3 | [i] | ||
4 | No (63, 202, 203)-net in base 3 | [i] | ||
5 | No (63, 203, 203)-net in base 3 | [i] | ||
6 | No (63, 204, 203)-net in base 3 | [i] | ||
7 | No (63, 205, 203)-net in base 3 | [i] | ||
8 | No (63, 206, 203)-net in base 3 | [i] | ||
9 | No (63, 207, 203)-net in base 3 | [i] | ||
10 | No (63, 208, 203)-net in base 3 | [i] | ||
11 | No (63, 209, 203)-net in base 3 | [i] | ||
12 | No (63, 210, 203)-net in base 3 | [i] | ||
13 | No (63, 211, 203)-net in base 3 | [i] | ||
14 | No (63, 212, 203)-net in base 3 | [i] | ||
15 | No (63, 213, 203)-net in base 3 | [i] | ||
16 | No (63, 214, 203)-net in base 3 | [i] | ||
17 | No (63, 215, 203)-net in base 3 | [i] | ||
18 | No (63, 216, 203)-net in base 3 | [i] | ||
19 | No (63, 217, 203)-net in base 3 | [i] | ||
20 | No (63, 218, 203)-net in base 3 | [i] | ||
21 | No (63, 219, 203)-net in base 3 | [i] | ||
22 | No (63, 220, 203)-net in base 3 | [i] | ||
23 | No (63, 221, 203)-net in base 3 | [i] | ||
24 | No (63, 222, 203)-net in base 3 | [i] | ||
25 | No (63, 223, 203)-net in base 3 | [i] | ||
26 | No (63, 224, 203)-net in base 3 | [i] | ||
27 | No (63, 225, 203)-net in base 3 | [i] | ||
28 | No (63, 226, 203)-net in base 3 | [i] | ||
29 | No (63, 227, 203)-net in base 3 | [i] | ||
30 | No (63, 228, 203)-net in base 3 | [i] | ||
31 | No (63, 229, 203)-net in base 3 | [i] | ||
32 | No (63, 230, 203)-net in base 3 | [i] | ||
33 | No (63, 231, 203)-net in base 3 | [i] | ||
34 | No (63, 232, 203)-net in base 3 | [i] | ||
35 | No (63, 233, 203)-net in base 3 | [i] | ||
36 | No (63, 234, 203)-net in base 3 | [i] | ||
37 | No (63, 235, 203)-net in base 3 | [i] | ||
38 | No (63, 236, 203)-net in base 3 | [i] | ||
39 | No (63, 237, 203)-net in base 3 | [i] | ||
40 | No (63, 238, 203)-net in base 3 | [i] | ||
41 | No (63, 239, 203)-net in base 3 | [i] | ||
42 | No (63, 240, 203)-net in base 3 | [i] | ||
43 | No (63, 241, 203)-net in base 3 | [i] | ||
44 | No (63, 242, 203)-net in base 3 | [i] | ||
45 | No (63, 243, 203)-net in base 3 | [i] | ||
46 | No (63, 244, 203)-net in base 3 | [i] | ||
47 | No (63, 245, 203)-net in base 3 | [i] | ||
48 | No (63, 246, 203)-net in base 3 | [i] | ||
49 | No (63, 247, 203)-net in base 3 | [i] | ||
50 | No (63, 248, 203)-net in base 3 | [i] | ||
51 | No (63, 249, 203)-net in base 3 | [i] | ||
52 | No (63, 250, 203)-net in base 3 | [i] |