Information on Result #521734

There is no (72, 181, 295)-net in base 3, because extracting embedded orthogonal array would yield OA(3181, 295, S3, 109), but

Mode: Bound.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No (72, 182, 295)-net in base 3 [i]m-Reduction
2No (72, 183, 295)-net in base 3 [i]
3No (72, 184, 295)-net in base 3 [i]
4No (72, 185, 295)-net in base 3 [i]
5No (72, 186, 295)-net in base 3 [i]
6No (72, 187, 295)-net in base 3 [i]
7No (72, 188, 295)-net in base 3 [i]
8No (72, 189, 295)-net in base 3 [i]
9No (72, 190, 295)-net in base 3 [i]
10No (72, 191, 295)-net in base 3 [i]
11No (72, 192, 295)-net in base 3 [i]
12No (72, 193, 295)-net in base 3 [i]
13No (72, 194, 295)-net in base 3 [i]
14No (72, 195, 295)-net in base 3 [i]
15No (72, 196, 295)-net in base 3 [i]
16No (72, 197, 295)-net in base 3 [i]
17No (72, 198, 295)-net in base 3 [i]
18No (72, 199, 295)-net in base 3 [i]
19No (72, 200, 295)-net in base 3 [i]
20No (72, 201, 295)-net in base 3 [i]
21No (72, 202, 295)-net in base 3 [i]
22No (72, 203, 295)-net in base 3 [i]
23No (72, 204, 295)-net in base 3 [i]
24No (72, 205, 295)-net in base 3 [i]
25No (72, 206, 295)-net in base 3 [i]
26No (72, 207, 295)-net in base 3 [i]
27No (72, 208, 295)-net in base 3 [i]
28No (72, 209, 295)-net in base 3 [i]
29No (72, 210, 295)-net in base 3 [i]
30No (72, 211, 295)-net in base 3 [i]
31No (72, 212, 295)-net in base 3 [i]
32No (72, 213, 295)-net in base 3 [i]
33No (72, 214, 295)-net in base 3 [i]
34No (72, 215, 295)-net in base 3 [i]
35No (72, 216, 295)-net in base 3 [i]
36No (72, 217, 295)-net in base 3 [i]
37No (72, 218, 295)-net in base 3 [i]
38No (72, 219, 295)-net in base 3 [i]
39No (72, 220, 295)-net in base 3 [i]
40No (72, 221, 295)-net in base 3 [i]
41No (72, 222, 295)-net in base 3 [i]
42No (72, 223, 295)-net in base 3 [i]
43No (72, 224, 295)-net in base 3 [i]