Information on Result #521841
There is no (10, 119, 41)-net in base 4, because extracting embedded OOA would yield OOA(4119, 41, S4, 3, 109), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 25 619282 439286 572778 957813 760772 318479 498516 504696 474892 763289 918742 986752 / 55 > 4119 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (10, 120, 41)-net in base 4 | [i] | m-Reduction | |
2 | No (10, 121, 41)-net in base 4 | [i] | ||
3 | No (10, 122, 41)-net in base 4 | [i] | ||
4 | No (10, 123, 41)-net in base 4 | [i] | ||
5 | No (10, 124, 41)-net in base 4 | [i] | ||
6 | No (10, 125, 41)-net in base 4 | [i] | ||
7 | No (10, 126, 41)-net in base 4 | [i] | ||
8 | No (10, 127, 41)-net in base 4 | [i] | ||
9 | No (10, 128, 41)-net in base 4 | [i] | ||
10 | No (10, 129, 41)-net in base 4 | [i] | ||
11 | No (10, 130, 41)-net in base 4 | [i] | ||
12 | No (10, 131, 41)-net in base 4 | [i] | ||
13 | No (10, 132, 41)-net in base 4 | [i] | ||
14 | No (10, 133, 41)-net in base 4 | [i] | ||
15 | No (10, 134, 41)-net in base 4 | [i] | ||
16 | No (10, 135, 41)-net in base 4 | [i] | ||
17 | No (10, 136, 41)-net in base 4 | [i] | ||
18 | No (10, 137, 41)-net in base 4 | [i] | ||
19 | No (10, 138, 41)-net in base 4 | [i] | ||
20 | No (10, 139, 41)-net in base 4 | [i] | ||
21 | No (10, 140, 41)-net in base 4 | [i] | ||
22 | No (10, 141, 41)-net in base 4 | [i] | ||
23 | No (10, 142, 41)-net in base 4 | [i] | ||
24 | No (10, 143, 41)-net in base 4 | [i] | ||
25 | No (10, 144, 41)-net in base 4 | [i] | ||
26 | No (10, 145, 41)-net in base 4 | [i] | ||
27 | No (10, 146, 41)-net in base 4 | [i] | ||
28 | No (10, 147, 41)-net in base 4 | [i] | ||
29 | No (10, 148, 41)-net in base 4 | [i] | ||
30 | No (10, 149, 41)-net in base 4 | [i] | ||
31 | No (10, 150, 41)-net in base 4 | [i] | ||
32 | No (10, 151, 41)-net in base 4 | [i] | ||
33 | No (10, 152, 41)-net in base 4 | [i] | ||
34 | No (10, 153, 41)-net in base 4 | [i] | ||
35 | No (10, 154, 41)-net in base 4 | [i] | ||
36 | No (10, 155, 41)-net in base 4 | [i] | ||
37 | No (10, 156, 41)-net in base 4 | [i] | ||
38 | No (10, 157, 41)-net in base 4 | [i] | ||
39 | No (10, 158, 41)-net in base 4 | [i] | ||
40 | No (10, 159, 41)-net in base 4 | [i] | ||
41 | No (10, 160, 41)-net in base 4 | [i] | ||
42 | No (10, 161, 41)-net in base 4 | [i] | ||
43 | No (10, 162, 41)-net in base 4 | [i] | ||
44 | No (10, 163, 41)-net in base 4 | [i] | ||
45 | No (10, 164, 41)-net in base 4 | [i] | ||
46 | No (10, 165, 41)-net in base 4 | [i] | ||
47 | No (10, 166, 41)-net in base 4 | [i] | ||
48 | No (10, 167, 41)-net in base 4 | [i] | ||
49 | No (10, 168, 41)-net in base 4 | [i] | ||
50 | No (10, 169, 41)-net in base 4 | [i] | ||
51 | No (10, 170, 41)-net in base 4 | [i] | ||
52 | No (10, 171, 41)-net in base 4 | [i] | ||
53 | No (10, 172, 41)-net in base 4 | [i] | ||
54 | No (10, 173, 41)-net in base 4 | [i] | ||
55 | No (10, 174, 41)-net in base 4 | [i] | ||
56 | No (10, 175, 41)-net in base 4 | [i] | ||
57 | No (10, 176, 41)-net in base 4 | [i] | ||
58 | No (10, 177, 41)-net in base 4 | [i] | ||
59 | No (10, 178, 41)-net in base 4 | [i] | ||
60 | No (10, 179, 41)-net in base 4 | [i] | ||
61 | No (10, 180, 41)-net in base 4 | [i] | ||
62 | No (10, 181, 41)-net in base 4 | [i] | ||
63 | No (10, 182, 41)-net in base 4 | [i] | ||
64 | No (10, 183, 41)-net in base 4 | [i] | ||
65 | No (10, 184, 41)-net in base 4 | [i] | ||
66 | No (10, 185, 41)-net in base 4 | [i] | ||
67 | No (10, 186, 41)-net in base 4 | [i] | ||
68 | No (10, 187, 41)-net in base 4 | [i] | ||
69 | No (10, 188, 41)-net in base 4 | [i] | ||
70 | No (10, 189, 41)-net in base 4 | [i] | ||
71 | No (10, 190, 41)-net in base 4 | [i] | ||
72 | No (10, 191, 41)-net in base 4 | [i] | ||
73 | No (10, 192, 41)-net in base 4 | [i] | ||
74 | No (10, 193, 41)-net in base 4 | [i] | ||
75 | No (10, 194, 41)-net in base 4 | [i] | ||
76 | No (10, 195, 41)-net in base 4 | [i] | ||
77 | No (10, 196, 41)-net in base 4 | [i] | ||
78 | No (10, 197, 41)-net in base 4 | [i] | ||
79 | No (10, 198, 41)-net in base 4 | [i] | ||
80 | No (10, 199, 41)-net in base 4 | [i] | ||
81 | No (10, 200, 41)-net in base 4 | [i] | ||
82 | No (10, 201, 41)-net in base 4 | [i] | ||
83 | No (10, 202, 41)-net in base 4 | [i] | ||
84 | No (10, 203, 41)-net in base 4 | [i] | ||
85 | No (10, 204, 41)-net in base 4 | [i] | ||
86 | No (10, 205, 41)-net in base 4 | [i] | ||
87 | No (10, 206, 41)-net in base 4 | [i] | ||
88 | No (10, 207, 41)-net in base 4 | [i] | ||
89 | No (10, 208, 41)-net in base 4 | [i] | ||
90 | No (10, 209, 41)-net in base 4 | [i] | ||
91 | No (10, 210, 41)-net in base 4 | [i] | ||
92 | No (10, 211, 41)-net in base 4 | [i] | ||
93 | No (10, 212, 41)-net in base 4 | [i] | ||
94 | No (10, 213, 41)-net in base 4 | [i] | ||
95 | No (10, 214, 41)-net in base 4 | [i] | ||
96 | No (10, 215, 41)-net in base 4 | [i] | ||
97 | No (10, 216, 41)-net in base 4 | [i] | ||
98 | No (10, 217, 41)-net in base 4 | [i] | ||
99 | No (10, 218, 41)-net in base 4 | [i] | ||
100 | No (10, 219, 41)-net in base 4 | [i] | ||
101 | No (10, 220, 41)-net in base 4 | [i] | ||
102 | No (10, 221, 41)-net in base 4 | [i] | ||
103 | No (10, 222, 41)-net in base 4 | [i] | ||
104 | No (10, 223, 41)-net in base 4 | [i] | ||
105 | No (10, 224, 41)-net in base 4 | [i] | ||
106 | No (10, 225, 41)-net in base 4 | [i] | ||
107 | No (10, 226, 41)-net in base 4 | [i] | ||
108 | No (10, 227, 41)-net in base 4 | [i] | ||
109 | No (10, 228, 41)-net in base 4 | [i] | ||
110 | No (10, 229, 41)-net in base 4 | [i] | ||
111 | No (10, 230, 41)-net in base 4 | [i] | ||
112 | No (10, 231, 41)-net in base 4 | [i] | ||
113 | No (10, 232, 41)-net in base 4 | [i] | ||
114 | No (10, 233, 41)-net in base 4 | [i] | ||
115 | No (10, 234, 41)-net in base 4 | [i] | ||
116 | No (10, 235, 41)-net in base 4 | [i] | ||
117 | No (10, 236, 41)-net in base 4 | [i] | ||
118 | No (10, 237, 41)-net in base 4 | [i] | ||
119 | No (10, 238, 41)-net in base 4 | [i] | ||
120 | No (10, 239, 41)-net in base 4 | [i] | ||
121 | No (10, 240, 41)-net in base 4 | [i] | ||
122 | No (10, 241, 41)-net in base 4 | [i] | ||
123 | No (10, 242, 41)-net in base 4 | [i] | ||
124 | No (10, 243, 41)-net in base 4 | [i] | ||
125 | No (10, 244, 41)-net in base 4 | [i] | ||
126 | No (10, 245, 41)-net in base 4 | [i] | ||
127 | No (10, 246, 41)-net in base 4 | [i] | ||
128 | No (10, 247, 41)-net in base 4 | [i] | ||
129 | No (10, 248, 41)-net in base 4 | [i] | ||
130 | No (10, 249, 41)-net in base 4 | [i] | ||
131 | No (10, 250, 41)-net in base 4 | [i] | ||
132 | No (10, 251, 41)-net in base 4 | [i] | ||
133 | No (10, 252, 41)-net in base 4 | [i] | ||
134 | No (10, 253, 41)-net in base 4 | [i] | ||
135 | No (10, 254, 41)-net in base 4 | [i] | ||
136 | No (10, 255, 41)-net in base 4 | [i] | ||
137 | No (10, 256, 41)-net in base 4 | [i] | ||
138 | No (10, 257, 41)-net in base 4 | [i] | ||
139 | No (10, 258, 41)-net in base 4 | [i] | ||
140 | No (10, 259, 41)-net in base 4 | [i] | ||
141 | No (10, 260, 41)-net in base 4 | [i] | ||
142 | No (10, m, 41)-net in base 4 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |