Information on Result #521866
There is no (12, 140, 48)-net in base 4, because extracting embedded OOA would yield OOA(4140, 48, S4, 3, 128), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 124 330809 102446 660538 845562 036705 210025 114037 699336 929360 115994 223289 874253 133343 883264 / 43 > 4140 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (12, 141, 48)-net in base 4 | [i] | m-Reduction | |
2 | No (12, 142, 48)-net in base 4 | [i] | ||
3 | No (12, 143, 48)-net in base 4 | [i] | ||
4 | No (12, 144, 48)-net in base 4 | [i] | ||
5 | No (12, 145, 48)-net in base 4 | [i] | ||
6 | No (12, 146, 48)-net in base 4 | [i] | ||
7 | No (12, 147, 48)-net in base 4 | [i] | ||
8 | No (12, 148, 48)-net in base 4 | [i] | ||
9 | No (12, 149, 48)-net in base 4 | [i] | ||
10 | No (12, 150, 48)-net in base 4 | [i] | ||
11 | No (12, 151, 48)-net in base 4 | [i] | ||
12 | No (12, 152, 48)-net in base 4 | [i] | ||
13 | No (12, 153, 48)-net in base 4 | [i] | ||
14 | No (12, 154, 48)-net in base 4 | [i] | ||
15 | No (12, 155, 48)-net in base 4 | [i] | ||
16 | No (12, 156, 48)-net in base 4 | [i] | ||
17 | No (12, 157, 48)-net in base 4 | [i] | ||
18 | No (12, 158, 48)-net in base 4 | [i] | ||
19 | No (12, 159, 48)-net in base 4 | [i] | ||
20 | No (12, 160, 48)-net in base 4 | [i] | ||
21 | No (12, 161, 48)-net in base 4 | [i] | ||
22 | No (12, 162, 48)-net in base 4 | [i] | ||
23 | No (12, 163, 48)-net in base 4 | [i] | ||
24 | No (12, 164, 48)-net in base 4 | [i] | ||
25 | No (12, 165, 48)-net in base 4 | [i] | ||
26 | No (12, 166, 48)-net in base 4 | [i] | ||
27 | No (12, 167, 48)-net in base 4 | [i] | ||
28 | No (12, 168, 48)-net in base 4 | [i] | ||
29 | No (12, 169, 48)-net in base 4 | [i] | ||
30 | No (12, 170, 48)-net in base 4 | [i] | ||
31 | No (12, 171, 48)-net in base 4 | [i] | ||
32 | No (12, 172, 48)-net in base 4 | [i] | ||
33 | No (12, 173, 48)-net in base 4 | [i] | ||
34 | No (12, 174, 48)-net in base 4 | [i] | ||
35 | No (12, 175, 48)-net in base 4 | [i] | ||
36 | No (12, 176, 48)-net in base 4 | [i] | ||
37 | No (12, 177, 48)-net in base 4 | [i] | ||
38 | No (12, 178, 48)-net in base 4 | [i] | ||
39 | No (12, 179, 48)-net in base 4 | [i] | ||
40 | No (12, 180, 48)-net in base 4 | [i] | ||
41 | No (12, 181, 48)-net in base 4 | [i] | ||
42 | No (12, 182, 48)-net in base 4 | [i] | ||
43 | No (12, 183, 48)-net in base 4 | [i] | ||
44 | No (12, 184, 48)-net in base 4 | [i] | ||
45 | No (12, 185, 48)-net in base 4 | [i] | ||
46 | No (12, 186, 48)-net in base 4 | [i] | ||
47 | No (12, 187, 48)-net in base 4 | [i] | ||
48 | No (12, 188, 48)-net in base 4 | [i] | ||
49 | No (12, 189, 48)-net in base 4 | [i] | ||
50 | No (12, 190, 48)-net in base 4 | [i] | ||
51 | No (12, 191, 48)-net in base 4 | [i] | ||
52 | No (12, 192, 48)-net in base 4 | [i] | ||
53 | No (12, 193, 48)-net in base 4 | [i] | ||
54 | No (12, 194, 48)-net in base 4 | [i] | ||
55 | No (12, 195, 48)-net in base 4 | [i] | ||
56 | No (12, 196, 48)-net in base 4 | [i] | ||
57 | No (12, 197, 48)-net in base 4 | [i] | ||
58 | No (12, 198, 48)-net in base 4 | [i] | ||
59 | No (12, 199, 48)-net in base 4 | [i] | ||
60 | No (12, 200, 48)-net in base 4 | [i] | ||
61 | No (12, 201, 48)-net in base 4 | [i] | ||
62 | No (12, 202, 48)-net in base 4 | [i] | ||
63 | No (12, 203, 48)-net in base 4 | [i] | ||
64 | No (12, 204, 48)-net in base 4 | [i] | ||
65 | No (12, 205, 48)-net in base 4 | [i] | ||
66 | No (12, 206, 48)-net in base 4 | [i] | ||
67 | No (12, 207, 48)-net in base 4 | [i] | ||
68 | No (12, 208, 48)-net in base 4 | [i] | ||
69 | No (12, 209, 48)-net in base 4 | [i] | ||
70 | No (12, 210, 48)-net in base 4 | [i] | ||
71 | No (12, 211, 48)-net in base 4 | [i] | ||
72 | No (12, 212, 48)-net in base 4 | [i] | ||
73 | No (12, 213, 48)-net in base 4 | [i] | ||
74 | No (12, 214, 48)-net in base 4 | [i] | ||
75 | No (12, 215, 48)-net in base 4 | [i] | ||
76 | No (12, 216, 48)-net in base 4 | [i] | ||
77 | No (12, 217, 48)-net in base 4 | [i] | ||
78 | No (12, 218, 48)-net in base 4 | [i] | ||
79 | No (12, 219, 48)-net in base 4 | [i] | ||
80 | No (12, 220, 48)-net in base 4 | [i] | ||
81 | No (12, 221, 48)-net in base 4 | [i] | ||
82 | No (12, 222, 48)-net in base 4 | [i] | ||
83 | No (12, 223, 48)-net in base 4 | [i] | ||
84 | No (12, 224, 48)-net in base 4 | [i] | ||
85 | No (12, 225, 48)-net in base 4 | [i] | ||
86 | No (12, 226, 48)-net in base 4 | [i] | ||
87 | No (12, 227, 48)-net in base 4 | [i] | ||
88 | No (12, 228, 48)-net in base 4 | [i] | ||
89 | No (12, 229, 48)-net in base 4 | [i] | ||
90 | No (12, 230, 48)-net in base 4 | [i] | ||
91 | No (12, 231, 48)-net in base 4 | [i] | ||
92 | No (12, 232, 48)-net in base 4 | [i] | ||
93 | No (12, 233, 48)-net in base 4 | [i] | ||
94 | No (12, 234, 48)-net in base 4 | [i] | ||
95 | No (12, 235, 48)-net in base 4 | [i] | ||
96 | No (12, 236, 48)-net in base 4 | [i] | ||
97 | No (12, 237, 48)-net in base 4 | [i] | ||
98 | No (12, 238, 48)-net in base 4 | [i] | ||
99 | No (12, 239, 48)-net in base 4 | [i] | ||
100 | No (12, 240, 48)-net in base 4 | [i] | ||
101 | No (12, 241, 48)-net in base 4 | [i] | ||
102 | No (12, 242, 48)-net in base 4 | [i] | ||
103 | No (12, 243, 48)-net in base 4 | [i] | ||
104 | No (12, 244, 48)-net in base 4 | [i] | ||
105 | No (12, 245, 48)-net in base 4 | [i] | ||
106 | No (12, 246, 48)-net in base 4 | [i] | ||
107 | No (12, 247, 48)-net in base 4 | [i] | ||
108 | No (12, 248, 48)-net in base 4 | [i] | ||
109 | No (12, 249, 48)-net in base 4 | [i] | ||
110 | No (12, 250, 48)-net in base 4 | [i] | ||
111 | No (12, 251, 48)-net in base 4 | [i] | ||
112 | No (12, 252, 48)-net in base 4 | [i] | ||
113 | No (12, 253, 48)-net in base 4 | [i] | ||
114 | No (12, 254, 48)-net in base 4 | [i] | ||
115 | No (12, 255, 48)-net in base 4 | [i] | ||
116 | No (12, 256, 48)-net in base 4 | [i] | ||
117 | No (12, 257, 48)-net in base 4 | [i] | ||
118 | No (12, 258, 48)-net in base 4 | [i] | ||
119 | No (12, 259, 48)-net in base 4 | [i] | ||
120 | No (12, 260, 48)-net in base 4 | [i] | ||
121 | No (12, m, 48)-net in base 4 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |