Information on Result #521948
There is no (17, 185, 63)-net in base 4, because extracting embedded OOA would yield OOA(4185, 63, S4, 3, 168), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 413644 108018 789698 761718 438551 312351 957624 215974 124562 187933 744234 024911 175385 755930 374377 187512 542127 608643 452928 / 169 > 4185 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (17, 186, 63)-net in base 4 | [i] | m-Reduction | |
2 | No (17, 187, 63)-net in base 4 | [i] | ||
3 | No (17, 188, 63)-net in base 4 | [i] | ||
4 | No (17, 189, 63)-net in base 4 | [i] | ||
5 | No (17, 190, 63)-net in base 4 | [i] | ||
6 | No (17, 191, 63)-net in base 4 | [i] | ||
7 | No (17, 192, 63)-net in base 4 | [i] | ||
8 | No (17, 193, 63)-net in base 4 | [i] | ||
9 | No (17, 194, 63)-net in base 4 | [i] | ||
10 | No (17, 195, 63)-net in base 4 | [i] | ||
11 | No (17, 196, 63)-net in base 4 | [i] | ||
12 | No (17, 197, 63)-net in base 4 | [i] | ||
13 | No (17, 198, 63)-net in base 4 | [i] | ||
14 | No (17, 199, 63)-net in base 4 | [i] | ||
15 | No (17, 200, 63)-net in base 4 | [i] | ||
16 | No (17, 201, 63)-net in base 4 | [i] | ||
17 | No (17, 202, 63)-net in base 4 | [i] | ||
18 | No (17, 203, 63)-net in base 4 | [i] | ||
19 | No (17, 204, 63)-net in base 4 | [i] | ||
20 | No (17, 205, 63)-net in base 4 | [i] | ||
21 | No (17, 206, 63)-net in base 4 | [i] | ||
22 | No (17, 207, 63)-net in base 4 | [i] | ||
23 | No (17, 208, 63)-net in base 4 | [i] | ||
24 | No (17, 209, 63)-net in base 4 | [i] | ||
25 | No (17, 210, 63)-net in base 4 | [i] | ||
26 | No (17, 211, 63)-net in base 4 | [i] | ||
27 | No (17, 212, 63)-net in base 4 | [i] | ||
28 | No (17, 213, 63)-net in base 4 | [i] | ||
29 | No (17, 214, 63)-net in base 4 | [i] | ||
30 | No (17, 215, 63)-net in base 4 | [i] | ||
31 | No (17, 216, 63)-net in base 4 | [i] | ||
32 | No (17, 217, 63)-net in base 4 | [i] | ||
33 | No (17, 218, 63)-net in base 4 | [i] | ||
34 | No (17, 219, 63)-net in base 4 | [i] | ||
35 | No (17, 220, 63)-net in base 4 | [i] | ||
36 | No (17, 221, 63)-net in base 4 | [i] | ||
37 | No (17, 222, 63)-net in base 4 | [i] | ||
38 | No (17, 223, 63)-net in base 4 | [i] | ||
39 | No (17, 224, 63)-net in base 4 | [i] | ||
40 | No (17, 225, 63)-net in base 4 | [i] | ||
41 | No (17, 226, 63)-net in base 4 | [i] | ||
42 | No (17, 227, 63)-net in base 4 | [i] | ||
43 | No (17, 228, 63)-net in base 4 | [i] | ||
44 | No (17, 229, 63)-net in base 4 | [i] | ||
45 | No (17, 230, 63)-net in base 4 | [i] | ||
46 | No (17, 231, 63)-net in base 4 | [i] | ||
47 | No (17, 232, 63)-net in base 4 | [i] | ||
48 | No (17, 233, 63)-net in base 4 | [i] | ||
49 | No (17, 234, 63)-net in base 4 | [i] | ||
50 | No (17, 235, 63)-net in base 4 | [i] | ||
51 | No (17, 236, 63)-net in base 4 | [i] | ||
52 | No (17, 237, 63)-net in base 4 | [i] | ||
53 | No (17, 238, 63)-net in base 4 | [i] | ||
54 | No (17, 239, 63)-net in base 4 | [i] | ||
55 | No (17, 240, 63)-net in base 4 | [i] | ||
56 | No (17, 241, 63)-net in base 4 | [i] | ||
57 | No (17, 242, 63)-net in base 4 | [i] | ||
58 | No (17, 243, 63)-net in base 4 | [i] | ||
59 | No (17, 244, 63)-net in base 4 | [i] | ||
60 | No (17, 245, 63)-net in base 4 | [i] | ||
61 | No (17, 246, 63)-net in base 4 | [i] | ||
62 | No (17, 247, 63)-net in base 4 | [i] | ||
63 | No (17, 248, 63)-net in base 4 | [i] | ||
64 | No (17, 249, 63)-net in base 4 | [i] | ||
65 | No (17, 250, 63)-net in base 4 | [i] | ||
66 | No (17, 251, 63)-net in base 4 | [i] | ||
67 | No (17, 252, 63)-net in base 4 | [i] | ||
68 | No (17, 253, 63)-net in base 4 | [i] | ||
69 | No (17, 254, 63)-net in base 4 | [i] | ||
70 | No (17, 255, 63)-net in base 4 | [i] | ||
71 | No (17, 256, 63)-net in base 4 | [i] | ||
72 | No (17, 257, 63)-net in base 4 | [i] | ||
73 | No (17, 258, 63)-net in base 4 | [i] | ||
74 | No (17, 259, 63)-net in base 4 | [i] | ||
75 | No (17, 260, 63)-net in base 4 | [i] | ||
76 | No (17, m, 63)-net in base 4 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |