Information on Result #521967
There is no (18, 197, 67)-net in base 4, because extracting embedded OOA would yield OOA(4197, 67, S4, 3, 179), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 282433 580415 755626 993616 159437 829423 754811 571090 696321 715853 367121 633333 658092 005662 617460 515015 075313 301909 434519 257088 / 5 > 4197 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (18, 198, 67)-net in base 4 | [i] | m-Reduction | |
2 | No (18, 199, 67)-net in base 4 | [i] | ||
3 | No (18, 200, 67)-net in base 4 | [i] | ||
4 | No (18, 201, 67)-net in base 4 | [i] | ||
5 | No (18, 202, 67)-net in base 4 | [i] | ||
6 | No (18, 203, 67)-net in base 4 | [i] | ||
7 | No (18, 204, 67)-net in base 4 | [i] | ||
8 | No (18, 205, 67)-net in base 4 | [i] | ||
9 | No (18, 206, 67)-net in base 4 | [i] | ||
10 | No (18, 207, 67)-net in base 4 | [i] | ||
11 | No (18, 208, 67)-net in base 4 | [i] | ||
12 | No (18, 209, 67)-net in base 4 | [i] | ||
13 | No (18, 210, 67)-net in base 4 | [i] | ||
14 | No (18, 211, 67)-net in base 4 | [i] | ||
15 | No (18, 212, 67)-net in base 4 | [i] | ||
16 | No (18, 213, 67)-net in base 4 | [i] | ||
17 | No (18, 214, 67)-net in base 4 | [i] | ||
18 | No (18, 215, 67)-net in base 4 | [i] | ||
19 | No (18, 216, 67)-net in base 4 | [i] | ||
20 | No (18, 217, 67)-net in base 4 | [i] | ||
21 | No (18, 218, 67)-net in base 4 | [i] | ||
22 | No (18, 219, 67)-net in base 4 | [i] | ||
23 | No (18, 220, 67)-net in base 4 | [i] | ||
24 | No (18, 221, 67)-net in base 4 | [i] | ||
25 | No (18, 222, 67)-net in base 4 | [i] | ||
26 | No (18, 223, 67)-net in base 4 | [i] | ||
27 | No (18, 224, 67)-net in base 4 | [i] | ||
28 | No (18, 225, 67)-net in base 4 | [i] | ||
29 | No (18, 226, 67)-net in base 4 | [i] | ||
30 | No (18, 227, 67)-net in base 4 | [i] | ||
31 | No (18, 228, 67)-net in base 4 | [i] | ||
32 | No (18, 229, 67)-net in base 4 | [i] | ||
33 | No (18, 230, 67)-net in base 4 | [i] | ||
34 | No (18, 231, 67)-net in base 4 | [i] | ||
35 | No (18, 232, 67)-net in base 4 | [i] | ||
36 | No (18, 233, 67)-net in base 4 | [i] | ||
37 | No (18, 234, 67)-net in base 4 | [i] | ||
38 | No (18, 235, 67)-net in base 4 | [i] | ||
39 | No (18, 236, 67)-net in base 4 | [i] | ||
40 | No (18, 237, 67)-net in base 4 | [i] | ||
41 | No (18, 238, 67)-net in base 4 | [i] | ||
42 | No (18, 239, 67)-net in base 4 | [i] | ||
43 | No (18, 240, 67)-net in base 4 | [i] | ||
44 | No (18, 241, 67)-net in base 4 | [i] | ||
45 | No (18, 242, 67)-net in base 4 | [i] | ||
46 | No (18, 243, 67)-net in base 4 | [i] | ||
47 | No (18, 244, 67)-net in base 4 | [i] | ||
48 | No (18, 245, 67)-net in base 4 | [i] | ||
49 | No (18, 246, 67)-net in base 4 | [i] | ||
50 | No (18, 247, 67)-net in base 4 | [i] | ||
51 | No (18, 248, 67)-net in base 4 | [i] | ||
52 | No (18, 249, 67)-net in base 4 | [i] | ||
53 | No (18, 250, 67)-net in base 4 | [i] | ||
54 | No (18, 251, 67)-net in base 4 | [i] | ||
55 | No (18, 252, 67)-net in base 4 | [i] | ||
56 | No (18, 253, 67)-net in base 4 | [i] | ||
57 | No (18, 254, 67)-net in base 4 | [i] | ||
58 | No (18, 255, 67)-net in base 4 | [i] | ||
59 | No (18, 256, 67)-net in base 4 | [i] | ||
60 | No (18, 257, 67)-net in base 4 | [i] | ||
61 | No (18, 258, 67)-net in base 4 | [i] | ||
62 | No (18, 259, 67)-net in base 4 | [i] | ||
63 | No (18, 260, 67)-net in base 4 | [i] | ||
64 | No (18, m, 67)-net in base 4 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |