Information on Result #522939
There is no (8, 57, 67)-net in base 7, because extracting embedded orthogonal array would yield OA(757, 67, S7, 49), but
- the linear programming bound shows that M ≥ 14 690613 296110 757318 840379 593851 330929 325424 135975 451203 / 9 440000 > 757 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (8, 58, 67)-net in base 7 | [i] | m-Reduction | |
2 | No (8, 59, 67)-net in base 7 | [i] | ||
3 | No (8, 60, 67)-net in base 7 | [i] | ||
4 | No (8, 61, 67)-net in base 7 | [i] | ||
5 | No (8, 62, 67)-net in base 7 | [i] | ||
6 | No (8, 63, 67)-net in base 7 | [i] | ||
7 | No (8, 64, 67)-net in base 7 | [i] | ||
8 | No (8, 65, 67)-net in base 7 | [i] | ||
9 | No (8, 66, 67)-net in base 7 | [i] | ||
10 | No (8, 67, 67)-net in base 7 | [i] | ||
11 | No (8, 68, 67)-net in base 7 | [i] | ||
12 | No (8, 69, 67)-net in base 7 | [i] | ||
13 | No (8, 70, 67)-net in base 7 | [i] | ||
14 | No (8, 71, 67)-net in base 7 | [i] | ||
15 | No (8, 72, 67)-net in base 7 | [i] | ||
16 | No (8, 73, 67)-net in base 7 | [i] | ||
17 | No (8, 74, 67)-net in base 7 | [i] | ||
18 | No (8, 75, 67)-net in base 7 | [i] | ||
19 | No (8, 76, 67)-net in base 7 | [i] | ||
20 | No (8, 77, 67)-net in base 7 | [i] | ||
21 | No (8, 78, 67)-net in base 7 | [i] | ||
22 | No (8, 79, 67)-net in base 7 | [i] | ||
23 | No (8, 80, 67)-net in base 7 | [i] | ||
24 | No (8, 81, 67)-net in base 7 | [i] | ||
25 | No (8, 82, 67)-net in base 7 | [i] | ||
26 | No (8, 83, 67)-net in base 7 | [i] | ||
27 | No (8, 84, 67)-net in base 7 | [i] | ||
28 | No (8, 85, 67)-net in base 7 | [i] | ||
29 | No (8, 86, 67)-net in base 7 | [i] | ||
30 | No (8, 87, 67)-net in base 7 | [i] | ||
31 | No (8, 88, 67)-net in base 7 | [i] | ||
32 | No (8, 89, 67)-net in base 7 | [i] | ||
33 | No (8, 90, 67)-net in base 7 | [i] | ||
34 | No (8, 91, 67)-net in base 7 | [i] | ||
35 | No (8, 92, 67)-net in base 7 | [i] | ||
36 | No (8, 93, 67)-net in base 7 | [i] | ||
37 | No (8, 94, 67)-net in base 7 | [i] | ||
38 | No (8, 95, 67)-net in base 7 | [i] | ||
39 | No (8, 96, 67)-net in base 7 | [i] | ||
40 | No (8, 97, 67)-net in base 7 | [i] | ||
41 | No (8, 98, 67)-net in base 7 | [i] | ||
42 | No (8, 99, 67)-net in base 7 | [i] | ||
43 | No (8, 100, 67)-net in base 7 | [i] | ||
44 | No (8, 101, 67)-net in base 7 | [i] | ||
45 | No (8, 102, 67)-net in base 7 | [i] | ||
46 | No (8, 103, 67)-net in base 7 | [i] | ||
47 | No (8, 104, 67)-net in base 7 | [i] | ||
48 | No (8, 105, 67)-net in base 7 | [i] | ||
49 | No (8, 106, 67)-net in base 7 | [i] | ||
50 | No (8, 107, 67)-net in base 7 | [i] | ||
51 | No (8, 108, 67)-net in base 7 | [i] | ||
52 | No (8, 109, 67)-net in base 7 | [i] | ||
53 | No (8, 110, 67)-net in base 7 | [i] |