Information on Result #523786

There is no (17, 122, 297)-net in base 9, because extracting embedded orthogonal array would yield OA(9122, 297, S9, 105), but

Mode: Bound.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No (17, 123, 297)-net in base 9 [i]m-Reduction
2No (17, 124, 297)-net in base 9 [i]
3No (17, 125, 297)-net in base 9 [i]
4No (17, 126, 297)-net in base 9 [i]
5No (17, 127, 297)-net in base 9 [i]
6No (17, 128, 297)-net in base 9 [i]
7No (17, 129, 297)-net in base 9 [i]
8No (17, 130, 297)-net in base 9 [i]
9No (17, 131, 297)-net in base 9 [i]
10No (17, 132, 297)-net in base 9 [i]
11No (17, 133, 297)-net in base 9 [i]
12No (17, 134, 297)-net in base 9 [i]
13No (17, 135, 297)-net in base 9 [i]
14No (17, 136, 297)-net in base 9 [i]
15No (17, 137, 297)-net in base 9 [i]
16No (17, 138, 297)-net in base 9 [i]
17No (17, 139, 297)-net in base 9 [i]
18No (17, 140, 297)-net in base 9 [i]
19No (17, 141, 297)-net in base 9 [i]
20No (17, 142, 297)-net in base 9 [i]
21No (17, 143, 297)-net in base 9 [i]
22No (17, 144, 297)-net in base 9 [i]
23No (17, 145, 297)-net in base 9 [i]
24No (17, 146, 297)-net in base 9 [i]
25No (17, 147, 297)-net in base 9 [i]
26No (17, 148, 297)-net in base 9 [i]
27No (17, 149, 297)-net in base 9 [i]
28No (17, 150, 297)-net in base 9 [i]