Information on Result #524413

There is no 1752-cap in AG(7,4), because 3 times the recursive bound from Bierbrauer and Edel would yield 41-cap in AG(4,4), but

Mode: Bound (linear).

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(48, 2383, F4, 3) (dual of [2383, 2375, 4]-code or 2383-cap in PG(7,4)) [i]Removing Affine Subspaces
2No linear OA(49, 8711, F4, 3) (dual of [8711, 8702, 4]-code or 8711-cap in PG(8,4)) [i]
3No linear OA(410, 31795, F4, 3) (dual of [31795, 31785, 4]-code or 31795-cap in PG(9,4)) [i]
4No linear OA(411, 116659, F4, 3) (dual of [116659, 116648, 4]-code or 116659-cap in PG(10,4)) [i]
5No linear OA(412, 430699, F4, 3) (dual of [430699, 430687, 4]-code or 430699-cap in PG(11,4)) [i]
6No linear OA(413, 1599358, F4, 3) (dual of [1599358, 1599345, 4]-code or 1599358-cap in PG(12,4)) [i]
7No linear OA(414, 5969576, F4, 3) (dual of [5969576, 5969562, 4]-code or 5969576-cap in PG(13,4)) [i]
8No linear OA(48, 2359, F4, 3) (dual of [2359, 2351, 4]-code or 2359-cap in PG(7,4)) [i]
9No linear OA(49, 8687, F4, 3) (dual of [8687, 8678, 4]-code or 8687-cap in PG(8,4)) [i]
10No linear OA(410, 31771, F4, 3) (dual of [31771, 31761, 4]-code or 31771-cap in PG(9,4)) [i]
11No linear OA(411, 116635, F4, 3) (dual of [116635, 116624, 4]-code or 116635-cap in PG(10,4)) [i]
12No linear OA(412, 430675, F4, 3) (dual of [430675, 430663, 4]-code or 430675-cap in PG(11,4)) [i]
13No linear OA(413, 1599334, F4, 3) (dual of [1599334, 1599321, 4]-code or 1599334-cap in PG(12,4)) [i]
14No linear OA(414, 5969552, F4, 3) (dual of [5969552, 5969538, 4]-code or 5969552-cap in PG(13,4)) [i]