Information on Result #524417

There is no 314041-cap in AG(11,4), because 7 times the recursive bound from Bierbrauer and Edel would yield 41-cap in AG(4,4), but

Mode: Bound (linear).

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(412, 430699, F4, 3) (dual of [430699, 430687, 4]-code or 430699-cap in PG(11,4)) [i]Removing Affine Subspaces
2No linear OA(413, 1599358, F4, 3) (dual of [1599358, 1599345, 4]-code or 1599358-cap in PG(12,4)) [i]
3No linear OA(414, 5969576, F4, 3) (dual of [5969576, 5969562, 4]-code or 5969576-cap in PG(13,4)) [i]
4No linear OA(412, 430675, F4, 3) (dual of [430675, 430663, 4]-code or 430675-cap in PG(11,4)) [i]
5No linear OA(413, 1599334, F4, 3) (dual of [1599334, 1599321, 4]-code or 1599334-cap in PG(12,4)) [i]
6No linear OA(414, 5969552, F4, 3) (dual of [5969552, 5969538, 4]-code or 5969552-cap in PG(13,4)) [i]