Information on Result #524424

There is no 7740-cap in AG(7,5), because 3 times the recursive bound from Bierbrauer and Edel would yield 89-cap in AG(4,5), but

Mode: Bound (linear).

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(58, 9892, F5, 3) (dual of [9892, 9884, 4]-code or 9892-cap in PG(7,5)) [i]Removing Affine Subspaces
2No linear OA(59, 45100, F5, 3) (dual of [45100, 45091, 4]-code or 45100-cap in PG(8,5)) [i]
3No linear OA(510, 206585, F5, 3) (dual of [206585, 206575, 4]-code or 206585-cap in PG(9,5)) [i]
4No linear OA(511, 952350, F5, 3) (dual of [952350, 952339, 4]-code or 952350-cap in PG(10,5)) [i]
5No linear OA(512, 4416622, F5, 3) (dual of [4416622, 4416610, 4]-code or 4416622-cap in PG(11,5)) [i]