Information on Result #526832
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(278, 83, F2, 2, 41) (dual of [(83, 2), 88, 42]-NRT-code) | [i] | m-Reduction for OOAs | |
2 | No linear OOA(279, 83, F2, 2, 42) (dual of [(83, 2), 87, 43]-NRT-code) | [i] | ||
3 | No linear OOA(280, 83, F2, 2, 43) (dual of [(83, 2), 86, 44]-NRT-code) | [i] | ||
4 | No linear OOA(281, 83, F2, 2, 44) (dual of [(83, 2), 85, 45]-NRT-code) | [i] | ||
5 | No linear OOA(282, 83, F2, 2, 45) (dual of [(83, 2), 84, 46]-NRT-code) | [i] | ||
6 | No linear OOA(283, 83, F2, 2, 46) (dual of [(83, 2), 83, 47]-NRT-code) | [i] | ||
7 | No linear OOA(284, 83, F2, 2, 47) (dual of [(83, 2), 82, 48]-NRT-code) | [i] | ||
8 | No linear OOA(285, 83, F2, 2, 48) (dual of [(83, 2), 81, 49]-NRT-code) | [i] | ||
9 | No linear OOA(286, 83, F2, 2, 49) (dual of [(83, 2), 80, 50]-NRT-code) | [i] | ||
10 | No linear OOA(287, 83, F2, 2, 50) (dual of [(83, 2), 79, 51]-NRT-code) | [i] | ||
11 | No linear OOA(288, 83, F2, 2, 51) (dual of [(83, 2), 78, 52]-NRT-code) | [i] | ||
12 | No linear OOA(289, 83, F2, 2, 52) (dual of [(83, 2), 77, 53]-NRT-code) | [i] | ||
13 | No linear OOA(290, 83, F2, 2, 53) (dual of [(83, 2), 76, 54]-NRT-code) | [i] | ||
14 | No linear OOA(291, 83, F2, 2, 54) (dual of [(83, 2), 75, 55]-NRT-code) | [i] | ||
15 | No linear OOA(292, 83, F2, 2, 55) (dual of [(83, 2), 74, 56]-NRT-code) | [i] | ||
16 | No linear OOA(293, 83, F2, 2, 56) (dual of [(83, 2), 73, 57]-NRT-code) | [i] | ||
17 | No linear OOA(294, 83, F2, 2, 57) (dual of [(83, 2), 72, 58]-NRT-code) | [i] | ||
18 | No linear OOA(295, 83, F2, 2, 58) (dual of [(83, 2), 71, 59]-NRT-code) | [i] | ||
19 | No linear OOA(296, 83, F2, 2, 59) (dual of [(83, 2), 70, 60]-NRT-code) | [i] | ||
20 | No linear OOA(297, 83, F2, 2, 60) (dual of [(83, 2), 69, 61]-NRT-code) | [i] | ||
21 | No linear OOA(298, 83, F2, 2, 61) (dual of [(83, 2), 68, 62]-NRT-code) | [i] | ||
22 | No linear OOA(299, 83, F2, 2, 62) (dual of [(83, 2), 67, 63]-NRT-code) | [i] | ||
23 | No linear OOA(2100, 83, F2, 2, 63) (dual of [(83, 2), 66, 64]-NRT-code) | [i] | ||
24 | No linear OOA(2101, 83, F2, 2, 64) (dual of [(83, 2), 65, 65]-NRT-code) | [i] | ||
25 | No linear OOA(2102, 83, F2, 2, 65) (dual of [(83, 2), 64, 66]-NRT-code) | [i] | ||
26 | No linear OOA(2103, 83, F2, 2, 66) (dual of [(83, 2), 63, 67]-NRT-code) | [i] | ||
27 | No linear OOA(2104, 83, F2, 2, 67) (dual of [(83, 2), 62, 68]-NRT-code) | [i] | ||
28 | No linear OOA(2105, 83, F2, 2, 68) (dual of [(83, 2), 61, 69]-NRT-code) | [i] | ||
29 | No linear OOA(2106, 83, F2, 2, 69) (dual of [(83, 2), 60, 70]-NRT-code) | [i] | ||
30 | No linear OOA(2107, 83, F2, 2, 70) (dual of [(83, 2), 59, 71]-NRT-code) | [i] | ||
31 | No linear OOA(2108, 83, F2, 2, 71) (dual of [(83, 2), 58, 72]-NRT-code) | [i] | ||
32 | No linear OOA(2109, 83, F2, 2, 72) (dual of [(83, 2), 57, 73]-NRT-code) | [i] | ||
33 | No linear OOA(277, 83, F2, 2, 40) (dual of [(83, 2), 89, 41]-NRT-code) | [i] | Depth Reduction | |
34 | No linear OOA(277, 83, F2, 3, 40) (dual of [(83, 3), 172, 41]-NRT-code) | [i] | ||
35 | No linear OOA(277, 83, F2, 4, 40) (dual of [(83, 4), 255, 41]-NRT-code) | [i] | ||
36 | No linear OOA(277, 83, F2, 5, 40) (dual of [(83, 5), 338, 41]-NRT-code) | [i] | ||
37 | No linear OOA(277, 83, F2, 6, 40) (dual of [(83, 6), 421, 41]-NRT-code) | [i] | ||
38 | No linear OOA(277, 83, F2, 7, 40) (dual of [(83, 7), 504, 41]-NRT-code) | [i] | ||
39 | No linear OOA(277, 83, F2, 8, 40) (dual of [(83, 8), 587, 41]-NRT-code) | [i] | ||
40 | No digital (37, 77, 83)-net over F2 | [i] | Extracting Embedded Orthogonal Array |