Information on Result #546367
There is no linear OA(2180, 203, F2, 88) (dual of [203, 23, 89]-code), because residual code would yield OA(292, 114, S2, 44), but
- the linear programming bound shows that M ≥ 26 699890 767307 081769 024311 263232 / 4557 > 292 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2181, 204, F2, 89) (dual of [204, 23, 90]-code) | [i] | Truncation | |
2 | No linear OOA(2181, 203, F2, 2, 89) (dual of [(203, 2), 225, 90]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2183, 203, F2, 2, 91) (dual of [(203, 2), 223, 92]-NRT-code) | [i] | ||
4 | No linear OOA(2180, 203, F2, 2, 88) (dual of [(203, 2), 226, 89]-NRT-code) | [i] | Depth Reduction | |
5 | No linear OOA(2180, 203, F2, 3, 88) (dual of [(203, 3), 429, 89]-NRT-code) | [i] | ||
6 | No linear OOA(2180, 203, F2, 4, 88) (dual of [(203, 4), 632, 89]-NRT-code) | [i] | ||
7 | No linear OOA(2180, 203, F2, 5, 88) (dual of [(203, 5), 835, 89]-NRT-code) | [i] | ||
8 | No linear OOA(2180, 203, F2, 6, 88) (dual of [(203, 6), 1038, 89]-NRT-code) | [i] | ||
9 | No linear OOA(2180, 203, F2, 7, 88) (dual of [(203, 7), 1241, 89]-NRT-code) | [i] | ||
10 | No linear OOA(2180, 203, F2, 8, 88) (dual of [(203, 8), 1444, 89]-NRT-code) | [i] | ||
11 | No digital (92, 180, 203)-net over F2 | [i] | Extracting Embedded Orthogonal Array |