Information on Result #546367

There is no linear OA(2180, 203, F2, 88) (dual of [203, 23, 89]-code), because residual code would yield OA(292, 114, S2, 44), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(2181, 204, F2, 89) (dual of [204, 23, 90]-code) [i]Truncation
2No linear OOA(2181, 203, F2, 2, 89) (dual of [(203, 2), 225, 90]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(2183, 203, F2, 2, 91) (dual of [(203, 2), 223, 92]-NRT-code) [i]
4No linear OOA(2180, 203, F2, 2, 88) (dual of [(203, 2), 226, 89]-NRT-code) [i]Depth Reduction
5No linear OOA(2180, 203, F2, 3, 88) (dual of [(203, 3), 429, 89]-NRT-code) [i]
6No linear OOA(2180, 203, F2, 4, 88) (dual of [(203, 4), 632, 89]-NRT-code) [i]
7No linear OOA(2180, 203, F2, 5, 88) (dual of [(203, 5), 835, 89]-NRT-code) [i]
8No linear OOA(2180, 203, F2, 6, 88) (dual of [(203, 6), 1038, 89]-NRT-code) [i]
9No linear OOA(2180, 203, F2, 7, 88) (dual of [(203, 7), 1241, 89]-NRT-code) [i]
10No linear OOA(2180, 203, F2, 8, 88) (dual of [(203, 8), 1444, 89]-NRT-code) [i]
11No digital (92, 180, 203)-net over F2 [i]Extracting Embedded Orthogonal Array