Information on Result #546425
There is no linear OA(2195, 216, F2, 96) (dual of [216, 21, 97]-code), because residual code would yield OA(299, 119, S2, 48), but
- the linear programming bound shows that M ≥ 7 222484 930221 945231 285920 393945 153536 / 10 168125 > 299 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2196, 217, F2, 97) (dual of [217, 21, 98]-code) | [i] | Truncation | |
2 | No linear OOA(2196, 216, F2, 2, 97) (dual of [(216, 2), 236, 98]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2195, 216, F2, 2, 96) (dual of [(216, 2), 237, 97]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2195, 216, F2, 3, 96) (dual of [(216, 3), 453, 97]-NRT-code) | [i] | ||
5 | No linear OOA(2195, 216, F2, 4, 96) (dual of [(216, 4), 669, 97]-NRT-code) | [i] | ||
6 | No linear OOA(2195, 216, F2, 5, 96) (dual of [(216, 5), 885, 97]-NRT-code) | [i] | ||
7 | No linear OOA(2195, 216, F2, 6, 96) (dual of [(216, 6), 1101, 97]-NRT-code) | [i] | ||
8 | No linear OOA(2195, 216, F2, 7, 96) (dual of [(216, 7), 1317, 97]-NRT-code) | [i] | ||
9 | No linear OOA(2195, 216, F2, 8, 96) (dual of [(216, 8), 1533, 97]-NRT-code) | [i] | ||
10 | No digital (99, 195, 216)-net over F2 | [i] | Extracting Embedded Orthogonal Array |