Information on Result #546492
There is no linear OA(2235, 248, F2, 118) (dual of [248, 13, 119]-code), because residual code would yield OA(2117, 129, S2, 59), but
- 1 times truncation [i] would yield OA(2116, 128, S2, 58), but
- the linear programming bound shows that M ≥ 156 848903 502620 073002 649233 113080 659968 / 1575 > 2116 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2236, 249, F2, 119) (dual of [249, 13, 120]-code) | [i] | Truncation | |
2 | No linear OOA(2236, 248, F2, 2, 119) (dual of [(248, 2), 260, 120]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2235, 248, F2, 2, 118) (dual of [(248, 2), 261, 119]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2235, 248, F2, 3, 118) (dual of [(248, 3), 509, 119]-NRT-code) | [i] | ||
5 | No linear OOA(2235, 248, F2, 4, 118) (dual of [(248, 4), 757, 119]-NRT-code) | [i] | ||
6 | No linear OOA(2235, 248, F2, 5, 118) (dual of [(248, 5), 1005, 119]-NRT-code) | [i] | ||
7 | No linear OOA(2235, 248, F2, 6, 118) (dual of [(248, 6), 1253, 119]-NRT-code) | [i] | ||
8 | No linear OOA(2235, 248, F2, 7, 118) (dual of [(248, 7), 1501, 119]-NRT-code) | [i] | ||
9 | No linear OOA(2235, 248, F2, 8, 118) (dual of [(248, 8), 1749, 119]-NRT-code) | [i] | ||
10 | No digital (117, 235, 248)-net over F2 | [i] | Extracting Embedded Orthogonal Array |