Information on Result #546620
There is no linear OA(3134, 231, F3, 84) (dual of [231, 97, 85]-code), because residual code would yield OA(350, 146, S3, 28), but
- the linear programming bound shows that M ≥ 1 005327 361531 234711 866975 289182 466989 734041 755525 / 1 282251 632725 448090 129998 > 350 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3135, 232, F3, 85) (dual of [232, 97, 86]-code) | [i] | Truncation | |
2 | No linear OA(3136, 233, F3, 86) (dual of [233, 97, 87]-code) | [i] | ||
3 | No linear OOA(3135, 231, F3, 2, 85) (dual of [(231, 2), 327, 86]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3136, 231, F3, 2, 86) (dual of [(231, 2), 326, 87]-NRT-code) | [i] | ||
5 | No linear OOA(3134, 231, F3, 2, 84) (dual of [(231, 2), 328, 85]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3134, 231, F3, 3, 84) (dual of [(231, 3), 559, 85]-NRT-code) | [i] | ||
7 | No linear OOA(3134, 231, F3, 4, 84) (dual of [(231, 4), 790, 85]-NRT-code) | [i] | ||
8 | No linear OOA(3134, 231, F3, 5, 84) (dual of [(231, 5), 1021, 85]-NRT-code) | [i] | ||
9 | No digital (50, 134, 231)-net over F3 | [i] | Extracting Embedded Orthogonal Array |