Information on Result #546626

There is no linear OA(3137, 223, F3, 87) (dual of [223, 86, 88]-code), because residual code would yield OA(350, 135, S3, 29), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3138, 224, F3, 88) (dual of [224, 86, 89]-code) [i]Truncation
2No linear OA(3139, 225, F3, 89) (dual of [225, 86, 90]-code) [i]
3No linear OOA(3138, 223, F3, 2, 88) (dual of [(223, 2), 308, 89]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3139, 223, F3, 2, 89) (dual of [(223, 2), 307, 90]-NRT-code) [i]
5No linear OOA(3137, 223, F3, 2, 87) (dual of [(223, 2), 309, 88]-NRT-code) [i]Depth Reduction
6No linear OOA(3137, 223, F3, 3, 87) (dual of [(223, 3), 532, 88]-NRT-code) [i]
7No linear OOA(3137, 223, F3, 4, 87) (dual of [(223, 4), 755, 88]-NRT-code) [i]
8No linear OOA(3137, 223, F3, 5, 87) (dual of [(223, 5), 978, 88]-NRT-code) [i]
9No digital (50, 137, 223)-net over F3 [i]Extracting Embedded Orthogonal Array