Information on Result #546627

There is no linear OA(3138, 234, F3, 87) (dual of [234, 96, 88]-code), because residual code would yield OA(351, 146, S3, 29), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3139, 235, F3, 88) (dual of [235, 96, 89]-code) [i]Truncation
2No linear OA(3140, 236, F3, 89) (dual of [236, 96, 90]-code) [i]
3No linear OOA(3139, 234, F3, 2, 88) (dual of [(234, 2), 329, 89]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3140, 234, F3, 2, 89) (dual of [(234, 2), 328, 90]-NRT-code) [i]
5No linear OOA(3138, 234, F3, 2, 87) (dual of [(234, 2), 330, 88]-NRT-code) [i]Depth Reduction
6No linear OOA(3138, 234, F3, 3, 87) (dual of [(234, 3), 564, 88]-NRT-code) [i]
7No linear OOA(3138, 234, F3, 4, 87) (dual of [(234, 4), 798, 88]-NRT-code) [i]
8No linear OOA(3138, 234, F3, 5, 87) (dual of [(234, 5), 1032, 88]-NRT-code) [i]
9No digital (51, 138, 234)-net over F3 [i]Extracting Embedded Orthogonal Array