Information on Result #546634
There is no linear OA(3141, 214, F3, 90) (dual of [214, 73, 91]-code), because residual code would yield OA(351, 123, S3, 30), but
- the linear programming bound shows that M ≥ 184 562452 634065 452157 662353 211684 517149 197249 714498 133253 737898 233581 110360 924816 302833 420114 709971 475375 / 80 717016 244069 464587 443624 242700 434296 750214 169562 345287 177003 948378 401931 804237 > 351 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3142, 215, F3, 91) (dual of [215, 73, 92]-code) | [i] | Truncation | |
2 | No linear OA(3143, 216, F3, 92) (dual of [216, 73, 93]-code) | [i] | ||
3 | No linear OOA(3142, 214, F3, 2, 91) (dual of [(214, 2), 286, 92]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3143, 214, F3, 2, 92) (dual of [(214, 2), 285, 93]-NRT-code) | [i] | ||
5 | No linear OOA(3141, 214, F3, 2, 90) (dual of [(214, 2), 287, 91]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3141, 214, F3, 3, 90) (dual of [(214, 3), 501, 91]-NRT-code) | [i] | ||
7 | No linear OOA(3141, 214, F3, 4, 90) (dual of [(214, 4), 715, 91]-NRT-code) | [i] | ||
8 | No linear OOA(3141, 214, F3, 5, 90) (dual of [(214, 5), 929, 91]-NRT-code) | [i] | ||
9 | No digital (51, 141, 214)-net over F3 | [i] | Extracting Embedded Orthogonal Array |