Information on Result #546635
There is no linear OA(3142, 228, F3, 90) (dual of [228, 86, 91]-code), because residual code would yield OA(352, 137, S3, 30), but
- the linear programming bound shows that M ≥ 44562 633012 596463 108701 497133 833862 064231 636556 224801 562500 / 6631 930927 956088 032510 798182 283163 > 352 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3143, 229, F3, 91) (dual of [229, 86, 92]-code) | [i] | Truncation | |
2 | No linear OA(3144, 230, F3, 92) (dual of [230, 86, 93]-code) | [i] | ||
3 | No linear OOA(3143, 228, F3, 2, 91) (dual of [(228, 2), 313, 92]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3144, 228, F3, 2, 92) (dual of [(228, 2), 312, 93]-NRT-code) | [i] | ||
5 | No linear OOA(3142, 228, F3, 2, 90) (dual of [(228, 2), 314, 91]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3142, 228, F3, 3, 90) (dual of [(228, 3), 542, 91]-NRT-code) | [i] | ||
7 | No linear OOA(3142, 228, F3, 4, 90) (dual of [(228, 4), 770, 91]-NRT-code) | [i] | ||
8 | No linear OOA(3142, 228, F3, 5, 90) (dual of [(228, 5), 998, 91]-NRT-code) | [i] | ||
9 | No digital (52, 142, 228)-net over F3 | [i] | Extracting Embedded Orthogonal Array |