Information on Result #546636

There is no linear OA(3143, 239, F3, 90) (dual of [239, 96, 91]-code), because residual code would yield OA(353, 148, S3, 30), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3144, 240, F3, 91) (dual of [240, 96, 92]-code) [i]Truncation
2No linear OA(3145, 241, F3, 92) (dual of [241, 96, 93]-code) [i]
3No linear OOA(3144, 239, F3, 2, 91) (dual of [(239, 2), 334, 92]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3145, 239, F3, 2, 92) (dual of [(239, 2), 333, 93]-NRT-code) [i]
5No linear OOA(3143, 239, F3, 2, 90) (dual of [(239, 2), 335, 91]-NRT-code) [i]Depth Reduction
6No linear OOA(3143, 239, F3, 3, 90) (dual of [(239, 3), 574, 91]-NRT-code) [i]
7No linear OOA(3143, 239, F3, 4, 90) (dual of [(239, 4), 813, 91]-NRT-code) [i]
8No linear OOA(3143, 239, F3, 5, 90) (dual of [(239, 5), 1052, 91]-NRT-code) [i]
9No digital (53, 143, 239)-net over F3 [i]Extracting Embedded Orthogonal Array