Information on Result #546636
There is no linear OA(3143, 239, F3, 90) (dual of [239, 96, 91]-code), because residual code would yield OA(353, 148, S3, 30), but
- the linear programming bound shows that M ≥ 29 655366 158662 334400 137851 564253 047850 828558 544874 600740 / 1 414103 374055 855272 533196 393519 > 353 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3144, 240, F3, 91) (dual of [240, 96, 92]-code) | [i] | Truncation | |
2 | No linear OA(3145, 241, F3, 92) (dual of [241, 96, 93]-code) | [i] | ||
3 | No linear OOA(3144, 239, F3, 2, 91) (dual of [(239, 2), 334, 92]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3145, 239, F3, 2, 92) (dual of [(239, 2), 333, 93]-NRT-code) | [i] | ||
5 | No linear OOA(3143, 239, F3, 2, 90) (dual of [(239, 2), 335, 91]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3143, 239, F3, 3, 90) (dual of [(239, 3), 574, 91]-NRT-code) | [i] | ||
7 | No linear OOA(3143, 239, F3, 4, 90) (dual of [(239, 4), 813, 91]-NRT-code) | [i] | ||
8 | No linear OOA(3143, 239, F3, 5, 90) (dual of [(239, 5), 1052, 91]-NRT-code) | [i] | ||
9 | No digital (53, 143, 239)-net over F3 | [i] | Extracting Embedded Orthogonal Array |