Information on Result #546641
There is no linear OA(3142, 179, F3, 93) (dual of [179, 37, 94]-code), because residual code would yield OA(349, 85, S3, 31), but
- the linear programming bound shows that M ≥ 680029 495837 431892 373726 566388 206026 660443 378717 028919 971748 021750 421500 256283 / 2 775791 539437 123450 845959 961813 360302 598435 660143 224610 > 349 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3142, 179, F3, 2, 93) (dual of [(179, 2), 216, 94]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3142, 179, F3, 3, 93) (dual of [(179, 3), 395, 94]-NRT-code) | [i] | ||
3 | No linear OOA(3142, 179, F3, 4, 93) (dual of [(179, 4), 574, 94]-NRT-code) | [i] | ||
4 | No linear OOA(3142, 179, F3, 5, 93) (dual of [(179, 5), 753, 94]-NRT-code) | [i] | ||
5 | No digital (49, 142, 179)-net over F3 | [i] | Extracting Embedded Orthogonal Array |