Information on Result #546642

There is no linear OA(3143, 192, F3, 93) (dual of [192, 49, 94]-code), because residual code would yield OA(350, 98, S3, 31), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3144, 193, F3, 94) (dual of [193, 49, 95]-code) [i]Truncation
2No linear OA(3145, 194, F3, 95) (dual of [194, 49, 96]-code) [i]
3No linear OOA(3144, 192, F3, 2, 94) (dual of [(192, 2), 240, 95]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3145, 192, F3, 2, 95) (dual of [(192, 2), 239, 96]-NRT-code) [i]
5No linear OOA(3143, 192, F3, 2, 93) (dual of [(192, 2), 241, 94]-NRT-code) [i]Depth Reduction
6No linear OOA(3143, 192, F3, 3, 93) (dual of [(192, 3), 433, 94]-NRT-code) [i]
7No linear OOA(3143, 192, F3, 4, 93) (dual of [(192, 4), 625, 94]-NRT-code) [i]
8No linear OOA(3143, 192, F3, 5, 93) (dual of [(192, 5), 817, 94]-NRT-code) [i]
9No digital (50, 143, 192)-net over F3 [i]Extracting Embedded Orthogonal Array