Information on Result #546643
There is no linear OA(3144, 204, F3, 93) (dual of [204, 60, 94]-code), because residual code would yield OA(351, 110, S3, 31), but
- the linear programming bound shows that M ≥ 27103 508958 616660 099388 058735 738039 757568 992407 234162 611825 882462 948846 428970 990364 625160 807452 274719 095060 078872 027349 329955 381926 561202 960333 105446 138240 280517 341767 410662 123867 211211 555448 / 12088 872897 616793 226656 425391 668285 319370 292783 656670 426139 876036 131456 534838 272045 441251 954158 313476 909583 033037 899142 334642 440098 569170 724363 206755 577542 040480 373885 > 351 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3145, 205, F3, 94) (dual of [205, 60, 95]-code) | [i] | Truncation | |
2 | No linear OA(3146, 206, F3, 95) (dual of [206, 60, 96]-code) | [i] | ||
3 | No linear OOA(3145, 204, F3, 2, 94) (dual of [(204, 2), 263, 95]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3146, 204, F3, 2, 95) (dual of [(204, 2), 262, 96]-NRT-code) | [i] | ||
5 | No linear OOA(3144, 204, F3, 2, 93) (dual of [(204, 2), 264, 94]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3144, 204, F3, 3, 93) (dual of [(204, 3), 468, 94]-NRT-code) | [i] | ||
7 | No linear OOA(3144, 204, F3, 4, 93) (dual of [(204, 4), 672, 94]-NRT-code) | [i] | ||
8 | No linear OOA(3144, 204, F3, 5, 93) (dual of [(204, 5), 876, 94]-NRT-code) | [i] | ||
9 | No digital (51, 144, 204)-net over F3 | [i] | Extracting Embedded Orthogonal Array |