Information on Result #546647
There is no linear OA(3148, 254, F3, 93) (dual of [254, 106, 94]-code), because residual code would yield OA(355, 160, S3, 31), but
- 1 times truncation [i] would yield OA(354, 159, S3, 30), but
- the linear programming bound shows that M ≥ 57 512545 780273 008066 954941 653603 554048 685010 751297 100155 / 986015 082551 936588 824240 203061 > 354 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3149, 255, F3, 94) (dual of [255, 106, 95]-code) | [i] | Truncation | |
2 | No linear OA(3150, 256, F3, 95) (dual of [256, 106, 96]-code) | [i] | ||
3 | No linear OOA(3149, 254, F3, 2, 94) (dual of [(254, 2), 359, 95]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3150, 254, F3, 2, 95) (dual of [(254, 2), 358, 96]-NRT-code) | [i] | ||
5 | No linear OOA(3148, 254, F3, 2, 93) (dual of [(254, 2), 360, 94]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3148, 254, F3, 3, 93) (dual of [(254, 3), 614, 94]-NRT-code) | [i] | ||
7 | No linear OOA(3148, 254, F3, 4, 93) (dual of [(254, 4), 868, 94]-NRT-code) | [i] | ||
8 | No linear OOA(3148, 254, F3, 5, 93) (dual of [(254, 5), 1122, 94]-NRT-code) | [i] | ||
9 | No digital (55, 148, 254)-net over F3 | [i] | Extracting Embedded Orthogonal Array |