Information on Result #546652
There is no linear OA(3146, 177, F3, 96) (dual of [177, 31, 97]-code), because residual code would yield OA(350, 80, S3, 32), but
- the linear programming bound shows that M ≥ 17966 137866 413855 600211 208294 867018 069814 838765 / 21749 437213 575033 309776 > 350 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3147, 178, F3, 97) (dual of [178, 31, 98]-code) | [i] | Truncation | |
2 | No linear OA(3148, 179, F3, 98) (dual of [179, 31, 99]-code) | [i] | ||
3 | No linear OOA(3147, 177, F3, 2, 97) (dual of [(177, 2), 207, 98]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3148, 177, F3, 2, 98) (dual of [(177, 2), 206, 99]-NRT-code) | [i] | ||
5 | No linear OOA(3146, 177, F3, 2, 96) (dual of [(177, 2), 208, 97]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3146, 177, F3, 3, 96) (dual of [(177, 3), 385, 97]-NRT-code) | [i] | ||
7 | No linear OOA(3146, 177, F3, 4, 96) (dual of [(177, 4), 562, 97]-NRT-code) | [i] | ||
8 | No linear OOA(3146, 177, F3, 5, 96) (dual of [(177, 5), 739, 97]-NRT-code) | [i] | ||
9 | No digital (50, 146, 177)-net over F3 | [i] | Extracting Embedded Orthogonal Array |