Information on Result #546655

There is no linear OA(3149, 213, F3, 96) (dual of [213, 64, 97]-code), because residual code would yield OA(353, 116, S3, 32), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3150, 214, F3, 97) (dual of [214, 64, 98]-code) [i]Truncation
2No linear OA(3151, 215, F3, 98) (dual of [215, 64, 99]-code) [i]
3No linear OOA(3150, 213, F3, 2, 97) (dual of [(213, 2), 276, 98]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3151, 213, F3, 2, 98) (dual of [(213, 2), 275, 99]-NRT-code) [i]
5No linear OOA(3149, 213, F3, 2, 96) (dual of [(213, 2), 277, 97]-NRT-code) [i]Depth Reduction
6No linear OOA(3149, 213, F3, 3, 96) (dual of [(213, 3), 490, 97]-NRT-code) [i]
7No linear OOA(3149, 213, F3, 4, 96) (dual of [(213, 4), 703, 97]-NRT-code) [i]
8No linear OOA(3149, 213, F3, 5, 96) (dual of [(213, 5), 916, 97]-NRT-code) [i]
9No digital (53, 149, 213)-net over F3 [i]Extracting Embedded Orthogonal Array