Information on Result #546655
There is no linear OA(3149, 213, F3, 96) (dual of [213, 64, 97]-code), because residual code would yield OA(353, 116, S3, 32), but
- the linear programming bound shows that M ≥ 30 210723 713137 067177 793975 595437 389937 655484 598142 095463 860309 406988 954987 805424 205733 738518 195687 105322 605711 836142 015912 625489 745728 349344 380080 374822 240851 452346 970066 591441 / 1 515367 982730 495420 433932 584698 701039 350523 187407 082539 706877 207417 526512 266220 467507 257976 353777 430603 205351 330224 160963 457142 806942 300281 987731 316143 > 353 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3150, 214, F3, 97) (dual of [214, 64, 98]-code) | [i] | Truncation | |
2 | No linear OA(3151, 215, F3, 98) (dual of [215, 64, 99]-code) | [i] | ||
3 | No linear OOA(3150, 213, F3, 2, 97) (dual of [(213, 2), 276, 98]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3151, 213, F3, 2, 98) (dual of [(213, 2), 275, 99]-NRT-code) | [i] | ||
5 | No linear OOA(3149, 213, F3, 2, 96) (dual of [(213, 2), 277, 97]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3149, 213, F3, 3, 96) (dual of [(213, 3), 490, 97]-NRT-code) | [i] | ||
7 | No linear OOA(3149, 213, F3, 4, 96) (dual of [(213, 4), 703, 97]-NRT-code) | [i] | ||
8 | No linear OOA(3149, 213, F3, 5, 96) (dual of [(213, 5), 916, 97]-NRT-code) | [i] | ||
9 | No digital (53, 149, 213)-net over F3 | [i] | Extracting Embedded Orthogonal Array |