Information on Result #546659
There is no linear OA(3153, 258, F3, 96) (dual of [258, 105, 97]-code), because residual code would yield OA(357, 161, S3, 32), but
- the linear programming bound shows that M ≥ 721213 722132 726616 769951 419548 792269 427090 005182 815014 600979 / 455 415925 085809 684165 452127 356779 > 357 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3154, 259, F3, 97) (dual of [259, 105, 98]-code) | [i] | Truncation | |
2 | No linear OA(3155, 260, F3, 98) (dual of [260, 105, 99]-code) | [i] | ||
3 | No linear OOA(3154, 258, F3, 2, 97) (dual of [(258, 2), 362, 98]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3155, 258, F3, 2, 98) (dual of [(258, 2), 361, 99]-NRT-code) | [i] | ||
5 | No linear OOA(3153, 258, F3, 2, 96) (dual of [(258, 2), 363, 97]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3153, 258, F3, 3, 96) (dual of [(258, 3), 621, 97]-NRT-code) | [i] | ||
7 | No linear OOA(3153, 258, F3, 4, 96) (dual of [(258, 4), 879, 97]-NRT-code) | [i] | ||
8 | No linear OOA(3153, 258, F3, 5, 96) (dual of [(258, 5), 1137, 97]-NRT-code) | [i] | ||
9 | No digital (57, 153, 258)-net over F3 | [i] | Extracting Embedded Orthogonal Array |