Information on Result #546666
There is no linear OA(3151, 185, F3, 99) (dual of [185, 34, 100]-code), because residual code would yield OA(352, 85, S3, 33), but
- the linear programming bound shows that M ≥ 860342 754412 435094 906698 858579 674571 922984 984079 / 127652 777684 493779 532100 > 352 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3152, 186, F3, 100) (dual of [186, 34, 101]-code) | [i] | Truncation | |
2 | No linear OA(3153, 187, F3, 101) (dual of [187, 34, 102]-code) | [i] | ||
3 | No linear OOA(3152, 185, F3, 2, 100) (dual of [(185, 2), 218, 101]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3153, 185, F3, 2, 101) (dual of [(185, 2), 217, 102]-NRT-code) | [i] | ||
5 | No linear OOA(3151, 185, F3, 2, 99) (dual of [(185, 2), 219, 100]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3151, 185, F3, 3, 99) (dual of [(185, 3), 404, 100]-NRT-code) | [i] | ||
7 | No linear OOA(3151, 185, F3, 4, 99) (dual of [(185, 4), 589, 100]-NRT-code) | [i] | ||
8 | No linear OOA(3151, 185, F3, 5, 99) (dual of [(185, 5), 774, 100]-NRT-code) | [i] | ||
9 | No digital (52, 151, 185)-net over F3 | [i] | Extracting Embedded Orthogonal Array |