Information on Result #546667
There is no linear OA(3152, 198, F3, 99) (dual of [198, 46, 100]-code), because residual code would yield OA(353, 98, S3, 33), but
- the linear programming bound shows that M ≥ 70405 986787 631825 456516 749181 938054 391496 023445 621407 247393 974860 100167 193867 925850 156399 787754 027088 012405 632448 512652 067196 819333 / 3435 057828 133240 896934 525314 441640 529877 282946 429987 863449 445479 386348 848486 854894 335014 985183 953870 063104 > 353 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3153, 199, F3, 100) (dual of [199, 46, 101]-code) | [i] | Truncation | |
2 | No linear OA(3154, 200, F3, 101) (dual of [200, 46, 102]-code) | [i] | ||
3 | No linear OOA(3153, 198, F3, 2, 100) (dual of [(198, 2), 243, 101]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3154, 198, F3, 2, 101) (dual of [(198, 2), 242, 102]-NRT-code) | [i] | ||
5 | No linear OOA(3152, 198, F3, 2, 99) (dual of [(198, 2), 244, 100]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3152, 198, F3, 3, 99) (dual of [(198, 3), 442, 100]-NRT-code) | [i] | ||
7 | No linear OOA(3152, 198, F3, 4, 99) (dual of [(198, 4), 640, 100]-NRT-code) | [i] | ||
8 | No linear OOA(3152, 198, F3, 5, 99) (dual of [(198, 5), 838, 100]-NRT-code) | [i] | ||
9 | No digital (53, 152, 198)-net over F3 | [i] | Extracting Embedded Orthogonal Array |