Information on Result #546670
There is no linear OA(3155, 235, F3, 99) (dual of [235, 80, 100]-code), because residual code would yield OA(356, 135, S3, 33), but
- the linear programming bound shows that M ≥ 5 540520 515178 119714 998982 762661 978465 988205 121913 455751 263763 784143 824055 345444 731692 711420 873316 188654 321383 010897 917089 561694 445957 308942 731239 278125 / 9558 817773 928640 265890 794601 216127 677021 431399 946162 118946 281454 606414 917120 730244 821409 409342 932190 846015 398469 123832 877827 > 356 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3156, 236, F3, 100) (dual of [236, 80, 101]-code) | [i] | Truncation | |
2 | No linear OA(3157, 237, F3, 101) (dual of [237, 80, 102]-code) | [i] | ||
3 | No linear OOA(3156, 235, F3, 2, 100) (dual of [(235, 2), 314, 101]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3157, 235, F3, 2, 101) (dual of [(235, 2), 313, 102]-NRT-code) | [i] | ||
5 | No linear OOA(3155, 235, F3, 2, 99) (dual of [(235, 2), 315, 100]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3155, 235, F3, 3, 99) (dual of [(235, 3), 550, 100]-NRT-code) | [i] | ||
7 | No linear OOA(3155, 235, F3, 4, 99) (dual of [(235, 4), 785, 100]-NRT-code) | [i] | ||
8 | No linear OOA(3155, 235, F3, 5, 99) (dual of [(235, 5), 1020, 100]-NRT-code) | [i] | ||
9 | No digital (56, 155, 235)-net over F3 | [i] | Extracting Embedded Orthogonal Array |