Information on Result #546672
There is no linear OA(3157, 262, F3, 99) (dual of [262, 105, 100]-code), because residual code would yield OA(358, 162, S3, 33), but
- 1 times truncation [i] would yield OA(357, 161, S3, 32), but
- the linear programming bound shows that M ≥ 721213 722132 726616 769951 419548 792269 427090 005182 815014 600979 / 455 415925 085809 684165 452127 356779 > 357 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3158, 263, F3, 100) (dual of [263, 105, 101]-code) | [i] | Truncation | |
2 | No linear OA(3159, 264, F3, 101) (dual of [264, 105, 102]-code) | [i] | ||
3 | No linear OOA(3158, 262, F3, 2, 100) (dual of [(262, 2), 366, 101]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3159, 262, F3, 2, 101) (dual of [(262, 2), 365, 102]-NRT-code) | [i] | ||
5 | No linear OOA(3157, 262, F3, 2, 99) (dual of [(262, 2), 367, 100]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3157, 262, F3, 3, 99) (dual of [(262, 3), 629, 100]-NRT-code) | [i] | ||
7 | No linear OOA(3157, 262, F3, 4, 99) (dual of [(262, 4), 891, 100]-NRT-code) | [i] | ||
8 | No linear OOA(3157, 262, F3, 5, 99) (dual of [(262, 5), 1153, 100]-NRT-code) | [i] | ||
9 | No digital (58, 157, 262)-net over F3 | [i] | Extracting Embedded Orthogonal Array |