Information on Result #546679
There is no linear OA(3155, 185, F3, 102) (dual of [185, 30, 103]-code), because residual code would yield OA(353, 82, S3, 34), but
- the linear programming bound shows that M ≥ 109 763126 725714 200014 609915 641908 532996 574841 / 4 714638 489586 850000 > 353 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3156, 186, F3, 103) (dual of [186, 30, 104]-code) | [i] | Truncation | |
2 | No linear OA(3157, 187, F3, 104) (dual of [187, 30, 105]-code) | [i] | ||
3 | No linear OOA(3156, 185, F3, 2, 103) (dual of [(185, 2), 214, 104]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3157, 185, F3, 2, 104) (dual of [(185, 2), 213, 105]-NRT-code) | [i] | ||
5 | No linear OOA(3155, 185, F3, 2, 102) (dual of [(185, 2), 215, 103]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3155, 185, F3, 3, 102) (dual of [(185, 3), 400, 103]-NRT-code) | [i] | ||
7 | No linear OOA(3155, 185, F3, 4, 102) (dual of [(185, 4), 585, 103]-NRT-code) | [i] | ||
8 | No linear OOA(3155, 185, F3, 5, 102) (dual of [(185, 5), 770, 103]-NRT-code) | [i] | ||
9 | No digital (53, 155, 185)-net over F3 | [i] | Extracting Embedded Orthogonal Array |