Information on Result #546683

There is no linear OA(3159, 232, F3, 102) (dual of [232, 73, 103]-code), because residual code would yield OA(357, 129, S3, 34), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3160, 233, F3, 103) (dual of [233, 73, 104]-code) [i]Truncation
2No linear OA(3161, 234, F3, 104) (dual of [234, 73, 105]-code) [i]
3No linear OOA(3160, 232, F3, 2, 103) (dual of [(232, 2), 304, 104]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3161, 232, F3, 2, 104) (dual of [(232, 2), 303, 105]-NRT-code) [i]
5No linear OOA(3159, 232, F3, 2, 102) (dual of [(232, 2), 305, 103]-NRT-code) [i]Depth Reduction
6No linear OOA(3159, 232, F3, 3, 102) (dual of [(232, 3), 537, 103]-NRT-code) [i]
7No linear OOA(3159, 232, F3, 4, 102) (dual of [(232, 4), 769, 103]-NRT-code) [i]
8No linear OOA(3159, 232, F3, 5, 102) (dual of [(232, 5), 1001, 103]-NRT-code) [i]
9No digital (57, 159, 232)-net over F3 [i]Extracting Embedded Orthogonal Array