Information on Result #546687
There is no linear OA(3163, 279, F3, 102) (dual of [279, 116, 103]-code), because residual code would yield OA(361, 176, S3, 34), but
- the linear programming bound shows that M ≥ 812 356626 791711 438639 003017 318488 339021 708011 289038 629210 828125 / 5801 809430 490682 982977 100374 687357 > 361 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3164, 280, F3, 103) (dual of [280, 116, 104]-code) | [i] | Truncation | |
2 | No linear OA(3165, 281, F3, 104) (dual of [281, 116, 105]-code) | [i] | ||
3 | No linear OOA(3164, 279, F3, 2, 103) (dual of [(279, 2), 394, 104]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3165, 279, F3, 2, 104) (dual of [(279, 2), 393, 105]-NRT-code) | [i] | ||
5 | No linear OOA(3163, 279, F3, 2, 102) (dual of [(279, 2), 395, 103]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3163, 279, F3, 3, 102) (dual of [(279, 3), 674, 103]-NRT-code) | [i] | ||
7 | No linear OOA(3163, 279, F3, 4, 102) (dual of [(279, 4), 953, 103]-NRT-code) | [i] | ||
8 | No linear OOA(3163, 279, F3, 5, 102) (dual of [(279, 5), 1232, 103]-NRT-code) | [i] | ||
9 | No digital (61, 163, 279)-net over F3 | [i] | Extracting Embedded Orthogonal Array |