Information on Result #546693
There is no linear OA(3160, 193, F3, 105) (dual of [193, 33, 106]-code), because residual code would yield OA(355, 87, S3, 35), but
- the linear programming bound shows that M ≥ 4 080243 847169 139626 292321 742040 788787 487274 687791 / 20316 463038 499354 974208 > 355 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3161, 194, F3, 106) (dual of [194, 33, 107]-code) | [i] | Truncation | |
2 | No linear OA(3162, 195, F3, 107) (dual of [195, 33, 108]-code) | [i] | ||
3 | No linear OOA(3161, 193, F3, 2, 106) (dual of [(193, 2), 225, 107]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3162, 193, F3, 2, 107) (dual of [(193, 2), 224, 108]-NRT-code) | [i] | ||
5 | No linear OOA(3160, 193, F3, 2, 105) (dual of [(193, 2), 226, 106]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3160, 193, F3, 3, 105) (dual of [(193, 3), 419, 106]-NRT-code) | [i] | ||
7 | No linear OOA(3160, 193, F3, 4, 105) (dual of [(193, 4), 612, 106]-NRT-code) | [i] | ||
8 | No linear OOA(3160, 193, F3, 5, 105) (dual of [(193, 5), 805, 106]-NRT-code) | [i] | ||
9 | No digital (55, 160, 193)-net over F3 | [i] | Extracting Embedded Orthogonal Array |