Information on Result #546699
There is no linear OA(3166, 266, F3, 105) (dual of [266, 100, 106]-code), because residual code would yield OA(361, 160, S3, 35), but
- the linear programming bound shows that M ≥ 1093 910277 777742 998768 653454 514500 328731 948244 229348 565648 421721 114272 536195 / 8588 577766 921583 861591 295968 393699 452287 752003 > 361 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3167, 267, F3, 106) (dual of [267, 100, 107]-code) | [i] | Truncation | |
2 | No linear OA(3168, 268, F3, 107) (dual of [268, 100, 108]-code) | [i] | ||
3 | No linear OOA(3167, 266, F3, 2, 106) (dual of [(266, 2), 365, 107]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3168, 266, F3, 2, 107) (dual of [(266, 2), 364, 108]-NRT-code) | [i] | ||
5 | No linear OOA(3166, 266, F3, 2, 105) (dual of [(266, 2), 366, 106]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3166, 266, F3, 3, 105) (dual of [(266, 3), 632, 106]-NRT-code) | [i] | ||
7 | No linear OOA(3166, 266, F3, 4, 105) (dual of [(266, 4), 898, 106]-NRT-code) | [i] | ||
8 | No linear OOA(3166, 266, F3, 5, 105) (dual of [(266, 5), 1164, 106]-NRT-code) | [i] | ||
9 | No digital (61, 166, 266)-net over F3 | [i] | Extracting Embedded Orthogonal Array |