Information on Result #546705
There is no linear OA(3165, 201, F3, 108) (dual of [201, 36, 109]-code), because residual code would yield OA(357, 92, S3, 36), but
- the linear programming bound shows that M ≥ 120 721890 049904 553965 455860 898229 550534 869060 685567 / 70191 477994 212742 316032 > 357 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3166, 202, F3, 109) (dual of [202, 36, 110]-code) | [i] | Truncation | |
2 | No linear OA(3167, 203, F3, 110) (dual of [203, 36, 111]-code) | [i] | ||
3 | No linear OOA(3166, 201, F3, 2, 109) (dual of [(201, 2), 236, 110]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3167, 201, F3, 2, 110) (dual of [(201, 2), 235, 111]-NRT-code) | [i] | ||
5 | No linear OOA(3165, 201, F3, 2, 108) (dual of [(201, 2), 237, 109]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3165, 201, F3, 3, 108) (dual of [(201, 3), 438, 109]-NRT-code) | [i] | ||
7 | No linear OOA(3165, 201, F3, 4, 108) (dual of [(201, 4), 639, 109]-NRT-code) | [i] | ||
8 | No linear OOA(3165, 201, F3, 5, 108) (dual of [(201, 5), 840, 109]-NRT-code) | [i] | ||
9 | No digital (57, 165, 201)-net over F3 | [i] | Extracting Embedded Orthogonal Array |