Information on Result #546710
There is no linear OA(3170, 260, F3, 108) (dual of [260, 90, 109]-code), because residual code would yield OA(362, 151, S3, 36), but
- the linear programming bound shows that M ≥ 315 982382 936192 071390 140679 488499 072998 791757 288635 952439 440300 300796 107515 352026 429217 565172 043806 037893 027375 543805 938233 482903 869423 244973 363200 / 785 326280 415847 869963 489755 597656 207457 889325 536642 055726 952039 256677 666095 401973 721090 055553 083299 838666 281323 935199 > 362 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3171, 261, F3, 109) (dual of [261, 90, 110]-code) | [i] | Truncation | |
2 | No linear OA(3172, 262, F3, 110) (dual of [262, 90, 111]-code) | [i] | ||
3 | No linear OOA(3171, 260, F3, 2, 109) (dual of [(260, 2), 349, 110]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3172, 260, F3, 2, 110) (dual of [(260, 2), 348, 111]-NRT-code) | [i] | ||
5 | No linear OOA(3170, 260, F3, 2, 108) (dual of [(260, 2), 350, 109]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3170, 260, F3, 3, 108) (dual of [(260, 3), 610, 109]-NRT-code) | [i] | ||
7 | No linear OOA(3170, 260, F3, 4, 108) (dual of [(260, 4), 870, 109]-NRT-code) | [i] | ||
8 | No linear OOA(3170, 260, F3, 5, 108) (dual of [(260, 5), 1130, 109]-NRT-code) | [i] | ||
9 | No digital (62, 170, 260)-net over F3 | [i] | Extracting Embedded Orthogonal Array |