Information on Result #546712
There is no linear OA(3172, 284, F3, 108) (dual of [284, 112, 109]-code), because residual code would yield OA(364, 175, S3, 36), but
- the linear programming bound shows that M ≥ 9416 034006 705562 294899 288842 534501 672943 849055 374790 819656 686449 203066 047883 / 2617 392919 548435 684112 676035 405385 302688 663969 > 364 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3173, 285, F3, 109) (dual of [285, 112, 110]-code) | [i] | Truncation | |
2 | No linear OA(3174, 286, F3, 110) (dual of [286, 112, 111]-code) | [i] | ||
3 | No linear OOA(3173, 284, F3, 2, 109) (dual of [(284, 2), 395, 110]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3174, 284, F3, 2, 110) (dual of [(284, 2), 394, 111]-NRT-code) | [i] | ||
5 | No linear OOA(3172, 284, F3, 2, 108) (dual of [(284, 2), 396, 109]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3172, 284, F3, 3, 108) (dual of [(284, 3), 680, 109]-NRT-code) | [i] | ||
7 | No linear OOA(3172, 284, F3, 4, 108) (dual of [(284, 4), 964, 109]-NRT-code) | [i] | ||
8 | No linear OOA(3172, 284, F3, 5, 108) (dual of [(284, 5), 1248, 109]-NRT-code) | [i] | ||
9 | No digital (64, 172, 284)-net over F3 | [i] | Extracting Embedded Orthogonal Array |